A charge of 25 nC is uniformly distributed along a straight rod of length 3.0 m that is bent into a circular arc with a radius of 2.3 m. What is the magnitude of the electric field at the center of curvature of the arc?

Respuesta :

Answer:

E = 31.329 N/C.

Explanation:

The differential electric field [tex]dE[/tex] at the center of curvature of the arc is

[tex]dE = k\dfrac{dQ}{r^2}cos(\theta )[/tex] (we have a cosine because vertical components cancel, leaving only horizontal cosine components of E. )

where [tex]r[/tex] is the radius of curvature.

Now

[tex]dQ = \lambda rd\theta[/tex],

where [tex]\lambda[/tex] is the charge per unit length, and it has the value

[tex]\lambda = \dfrac{25*10^{-9}C}{3.0m} = 8.3*10^{-9}C/m.[/tex]

Thus, the electric field at the center of the curvature of the arc is:

[tex]E = \int_{\theta_1}^{\theta_2} k\dfrac{\lambda rd\theta }{r^2} cos(\theta)[/tex]

[tex]E = \dfrac{\lambda k}{r} \int_{\theta_1}^{\theta_2}cos(\theta) d\theta.[/tex]

Now, we find [tex]\theta_1[/tex] and [tex]\theta_2[/tex]. To do this we ask ourselves what fraction is the arc length  3.0 of the circumference of the circle:

[tex]fraction = \dfrac{3.0m}{2\pi (2.3m)} = 0.2076[/tex]

and this is  

[tex]0.2076*2\pi =1.304[/tex] radians.

Therefore,

[tex]E = \dfrac{\lambda k}{r} \int_{\theta_1}^{\theta_2} cos(\theta)d\theta= \dfrac{\lambda k}{r} \int_{0}^{1.304}cos(\theta) d\theta.[/tex]

evaluating the integral, and putting in the numerical values  we get:

[tex]E = \dfrac{8.3*10^{-9} *9*10^9}{2.3} *(sin(1.304)-sin(0))\\[/tex]

[tex]\boxed{ E = 31.329N/C.}[/tex]

ACCESS MORE