What volume of F2 (in liters) is required to react with 1.00 g of uranium according to the equation U(s) + 3F2(g) → UF6(g), if the temperature is 15°C and the pressure is 745 mm Hg?

Respuesta :

Answer : The volume of [tex]F_2[/tex] required is, 0.304 L

Explanation :

First we have to calculate the moles of uranium.

[tex]\text{Moles of uranium}=\frac{\text{Mass of uranium}}{\text{Molar mass of uranium}}[/tex]

Molar mass of uranium = 238.03 g/mol

[tex]\text{Moles of uranium}=\frac{1.00g}{238.03g/mol}=0.00420mol[/tex]

Now we have to calculate the moles of [tex]F_2[/tex]

The given balanced chemical reaction is:

[tex]U(s)+3F_2(g)\rightarrow UF_6(g)[/tex]

From the balanced chemical reaction we conclude that,

As, 1 mole of uranium react with 3 moles of [tex]F_2[/tex]

So, 0.00420 mole of uranium react with [tex]0.00420\times 3=0.0126[/tex] moles of [tex]F_2[/tex]

Now we have to calculate the volume of [tex]F_2[/tex]

Using ideal gas equation:

[tex]PV=nRT[/tex]

where,

P = Pressure of [tex]F_2[/tex] gas = 745 mmHg = 0.980 atm    (1 atm = 760 mmHg)

V = Volume of [tex]F_2[/tex] gas = ?

n = number of moles [tex]F_2[/tex] = 0.0126 mole

R = Gas constant = [tex]0.0821L.atm/mol.K[/tex]

T = Temperature of [tex]F_2[/tex] gas = [tex]15^oC=273+15=288K[/tex]

Putting values in above equation, we get:

[tex]0.980atm\times V=0.0126mole\times (0.0821L.atm/mol.K)\times 288K[/tex]

[tex]V=0.304L[/tex]

Thus, the volume of [tex]F_2[/tex] required is, 0.304 L

ACCESS MORE