Answer : The volume of [tex]F_2[/tex] required is, 0.304 L
Explanation :
First we have to calculate the moles of uranium.
[tex]\text{Moles of uranium}=\frac{\text{Mass of uranium}}{\text{Molar mass of uranium}}[/tex]
Molar mass of uranium = 238.03 g/mol
[tex]\text{Moles of uranium}=\frac{1.00g}{238.03g/mol}=0.00420mol[/tex]
Now we have to calculate the moles of [tex]F_2[/tex]
The given balanced chemical reaction is:
[tex]U(s)+3F_2(g)\rightarrow UF_6(g)[/tex]
From the balanced chemical reaction we conclude that,
As, 1 mole of uranium react with 3 moles of [tex]F_2[/tex]
So, 0.00420 mole of uranium react with [tex]0.00420\times 3=0.0126[/tex] moles of [tex]F_2[/tex]
Now we have to calculate the volume of [tex]F_2[/tex]
Using ideal gas equation:
[tex]PV=nRT[/tex]
where,
P = Pressure of [tex]F_2[/tex] gas = 745 mmHg = 0.980 atm (1 atm = 760 mmHg)
V = Volume of [tex]F_2[/tex] gas = ?
n = number of moles [tex]F_2[/tex] = 0.0126 mole
R = Gas constant = [tex]0.0821L.atm/mol.K[/tex]
T = Temperature of [tex]F_2[/tex] gas = [tex]15^oC=273+15=288K[/tex]
Putting values in above equation, we get:
[tex]0.980atm\times V=0.0126mole\times (0.0821L.atm/mol.K)\times 288K[/tex]
[tex]V=0.304L[/tex]
Thus, the volume of [tex]F_2[/tex] required is, 0.304 L