The uncertainty in velocity is [tex]3.51 \times 10^{-24} \mathrm{m} / \mathrm{s}[/tex]
Explanation:
As per Heisenberg's uncertainity principle, the position and momentum of any object cannot be measured simultaneously. So product of uncertainty in position and momentum will be equal to modified plank's constant.
[tex]\Delta x \times \Delta p=\frac{h}{4 \pi}[/tex]
Here momentum is the product of mass and velocity.
So, [tex]\Delta x \times(m \times \Delta v)=\frac{h}{4 \pi}[/tex]
Here, given mass (m) = 150 g = 0.150 kg
position delta x = [tex]1 \times 10^{10}[/tex]
Planck's constant h = [tex]6.626 \times 10^{-34}[/tex] [tex]k g \cdot m^{2} / s[/tex]
[tex]\Delta v=\frac{h}{4 \pi \times \Delta x \times m}=\frac{6.626 \times 10^{-34}}{4 \times 3.14 \times 1 \times 10^{10} \times 0.150}[/tex]
[tex]\Delta v=\frac{6.626 \times 10^{-34+10}}{4 \times 3.14 \times 0.150}=\frac{6.626 \times 10^{-24}}{1.884}[/tex]
[tex]\Delta v=3.51 \times 10^{-24} \mathrm{m} / \mathrm{s}[/tex]
So the uncertainty in velocity is [tex]3.51 \times 10^{-24} \mathrm{m} / \mathrm{s}[/tex].