Respuesta :

Answer:

[tex]\left(\left(-x^2\right)-\left(12x^3\right)-8\right)^2:\quad 144x^6+24x^5+x^4+192x^3+16x^2+64[/tex]

Step-by-step explanation:

Considering the expression

[tex]\left(\left(-x^2\right)-\left(12x^3\right)-8\right)^2[/tex]

Solving the expression

[tex]\left(\left(-x^2\right)-\left(12x^3\right)-8\right)^2[/tex]

[tex]\mathrm{Remove\:parentheses}:\quad \left(a\right)=a[/tex]

[tex]\left(-x^2-12x^3-8\right)^2[/tex]

As

[tex]\left(-x^2-12x^3-8\right)^2=\left(-x^2-12x^3-8\right)\left(-x^2-12x^3-8\right)[/tex]

So

[tex]\left(-12x^3-x^2-8\right)\left(-12x^3-x^2-8\right)[/tex]

[tex]\mathrm{Expand}\:\left(-x^2-12x^3-8\right)\left(-x^2-12x^3-8\right):\quad 24x^5+144x^6+192x^3+x^4+16x^2+64[/tex]

i.e.

[tex]\left(-x^2\right)\left(-x^2\right)+\left(-x^2\right)\left(-12x^3\right)+\left(-x^2\right)\left(-8\right)+\left(-12x^3\right)\left(-x^2\right)+\left(-12x^3\right)\left(-12x^3\right)+\left(-12x^3\right)\left(-8\right)+\left(-8\right)\left(-x^2\right)+\left(-8\right)\left(-12x^3\right)+\left(-8\right)\left(-8\right)[/tex]

[tex]\mathrm{Apply\:minus-plus\:rules}[/tex]

[tex]\left(-a\right)\left(-b\right)=ab[/tex]

[tex]x^2x^2+12x^3x^2+8x^2+12x^3x^2+12\cdot \:12x^3x^3+12\cdot \:8x^3+8x^2+8\cdot \:12x^3+8\cdot \:8[/tex]

[tex]\mathrm{Group\:like\:terms}[/tex]

[tex]12x^3x^2+12x^3x^2+12\cdot \:12x^3x^3+12\cdot \:8x^3+8\cdot \:12x^3+x^2x^2+8x^2+8x^2+8\cdot \:8[/tex]

[tex]\mathrm{Add\:similar\:elements:}\:8x^2+8x^2=16x^2[/tex]

[tex]12x^3x^2+12x^3x^2+12\cdot \:12x^3x^3+12\cdot \:8x^3+8\cdot \:12x^3+x^2x^2+16x^2+8\cdot \:8[/tex]

[tex]\mathrm{Add\:similar\:elements:}\:12x^3x^2+12x^3x^2=24x^3x^2[/tex]

[tex]24x^3x^2+12\cdot \:12x^3x^3+12\cdot \:8x^3+8\cdot \:12x^3+x^2x^2+16x^2+8\cdot \:8[/tex]

[tex]\mathrm{Add\:similar\:elements:}\:12\cdot \:8x^3+8\cdot \:12x^3=2\cdot \:8\cdot \:12x^3[/tex]

[tex]24x^3x^2+12\cdot \:12x^3x^3+2\cdot \:8\cdot \:12x^3+x^2x^2+16x^2+8\cdot \:8[/tex]

As

[tex]24x^3x^2=24x^5[/tex]

[tex]12\cdot \:12x^3x^3=144x^6[/tex]

[tex]2\cdot \:8\cdot \:12x^3=192x^3[/tex]

[tex]x^2x^2=x^4[/tex]

[tex]8\cdot \:8=64[/tex]

So

[tex]24x^5+144x^6+192x^3+x^4+16x^2+64[/tex]

[tex]\mathrm{Rewrite\:in\:standard\:form}[/tex]

[tex]144x^6+24x^5+x^4+192x^3+16x^2+64[/tex]

Therefore,

[tex]\left(\left(-x^2\right)-\left(12x^3\right)-8\right)^2:\quad 144x^6+24x^5+x^4+192x^3+16x^2+64[/tex]

Keywords: expression

Learn more about expression solving from brainly.com/question/14683865

#learnwithBrainly

ACCESS MORE