Respuesta :

Answer:

     First figure:            [tex]954cm^3[/tex]

     Second figure:      [tex]1,508yd^3[/tex]

     Third figure:

  •          Height= q
  •           Side length = r

     Fourth figure:        [tex]726cm^3[/tex]

Explanation:

A. First figure:

1. Formula:

            [tex]\text{Volume of a cylinder}=\pi \times radius^2\times length[/tex]

2. Data:

  • radius = 9cm / 2 = 4.5cm
  • length = 15 cm

3. Substitute in the formula and compute:

          [tex]Volume=\pi \times (4.5cm)^2\times (15cm)\approx 954cm^3\approx 954cm^3[/tex]

B. Second figure

1. Formula:

       [tex]\text{Volume of a leaned cylinder}=\pi \times radius^2\times height[/tex]

2. Data:

  • radius = 12yd
  • height = 40 yd

3. Substitute and compute:

      [tex]Volume=\pi \times (12yd)^2\times (40yd)\approx 1,507.96yd^3\approx 1,508yd^3[/tex]

C) Third figure

a) The height is the segment that goes vertically upward from the center of the base to the apex of the pyramid, i.e.  q  .

The apex is the point where the three leaned edges intersect each other.

b) The side length is the measure of the edge of the base, i.e.  r .

When the base of the pyramid is a square the four edges of the base have the same side length.

D) Fourth figure

1. Formula

The volume of a square pyramide is one third the product of the area of the base (B) and the height H).

          [tex]Volume=(1/3)B\times H[/tex]

2. Data:

  • height: H = 18cm
  • side length of the base: 11 cm

3. Calculations

a) Calculate the area of the base.

The base is a square of side length equal to 11 cm:

          [tex]\text{Area of the base}=B=(11cm)^2=121cm^2[/tex]

b) Volume of the pyramid:

         [tex]Volume=(1/3)B\times H=(1/3)\times 121cm^2\times 18cm=726cm^3[/tex]

Answer:

1. 953.775 cm³

2. 18,086.4 yd³

3. height: q ; side: r

4. 726 cm³

Step-by-step explanation:

1. Volume = pi × r² × h

= 3.14 × (9/2)² × 15

= 953.775 cm³

2. Volume = pi × r² × h

= 3.14 × 12² × 40

= 18086.4 yd³

3. height: q ; side: r

4. Volume = ⅓ base area × height

= ⅓ × 11² × 18

= 726 cm³

ACCESS MORE