Which values of a and b make the equation true?
a = 0, b = 0
a = 3, b = 3
a = 4, b = 4
a = 5, b = 5
![Which values of a and b make the equation true a 0 b 0 a 3 b 3 a 4 b 4 a 5 b 5 class=](https://us-static.z-dn.net/files/dbc/41eb835ebbedbc1ad39de30ca95c0356.jpg)
Answer:
The values of a and b are a=3 and b=3.
Step-by-step explanation:
Given fractional equation is [tex]\frac{(2xy)^4}{4xy}=4x^ay^b[/tex]
To find the values of a and b to make given equation true :
[tex]\frac{(2xy)^4}{4xy}=4x^ay^b[/tex]
Take LHS [tex]\frac{(2xy)^4}{4xy}[/tex]
[tex]=\frac{2^4x^4y^4}{4xy}[/tex] ( using the property [tex](ab)^m=a^mb^m[/tex] )
[tex]=\frac{16x^4y^4}{4xy}[/tex]
[tex]=4x^4y^4x^{-1}y^{-1}[/tex] ( using the property [tex]\frac{1}{a^m}=a^{-m}[/tex] )
[tex]=4x^{4-1}y^{4-1}[/tex] ( using the property [tex]a^m.a^n=a^{m+n}[/tex] )
[tex]=4x^3y^3[/tex]
[tex]\frac{(2xy)^4}{4xy}=4x^3y^3[/tex]
Comparing with [tex]\frac{(2xy)^4}{4xy}=4x^ay^b=4x^3y^3[/tex]
Therefore [tex]4x^ay^b=4x^3y^3[/tex]
Therefore the values of a and b are a=3 and b=3