ΔVDG-ΔVNQ
What is the value of x?
Enter your answer in the box.
![ΔVDGΔVNQ What is the value of x Enter your answer in the box class=](https://us-static.z-dn.net/files/d1c/d761dbf45f690ced50e575be974e50c9.png)
Answer:
Therefore,
[tex]x=120\ unit[/tex]
Step-by-step explanation:
Given:
ΔVDG ~ ΔVNQ
DG = 207
NQ = 138
VG = x + 60
To Find:
VQ = x ?
Solution:
ΔVDG ~ ΔVNQ ..........Given
If two triangles are similar then their sides are in proportion.
[tex]\dfrac{DG}{NQ} =\dfrac{VG}{VQ} =\dfrac{VD}{VN}\ \textrm{corresponding sides of similar triangles are in proportion}\\[/tex]
On substituting the given values we get
[tex]\dfrac{DG}{NQ} =\dfrac{VG}{VQ}[/tex]
[tex]\dfrac{207}{138} =\dfrac{x+60}{x}\\\\\dfrac{3}{2}=\dfrac{x+60}{x}[/tex]
[tex]3x=2x+120\\3x-2x=120\\x=120\ unit[/tex]
Therefore,
[tex]x=120\ unit[/tex]