495 cm3 of oxygen gas and 877 cm3 of nitrogen gas, both at 25.0 C and 114.7 kpa, are injected into an evacuated 536 cm3 flask. Find the total pressure in the flask, assuming the temperature remains constant.

Respuesta :

Answer:

Total pressure of the flask is 2.8999 atm.

Explanation:

Given data:

Volume of oxygen (O2) gas= 495 cm3

                                              = 0.495 L (1 cm³ = 1 mL = 0.001 L)                                            

Volume of nitrogen (N2) gas =  877 cm3

                                               = 0.877 L (1 cm³ = 1 mL = 0.001 L)

volume of falsk = 536 cm3

                         = 0.536 L (1 cm³ = 1 mL = 0.001 L)

Temperature =  25 °C

T = (25°C + 273.15) K

    = 298.15 K

Pressure = 114.7 kPa

               = 114.700 Pa

Pressure (torr) = 114,700 / 101325

                        = 1.132 atm

Formula:

PV=nRT  (ideal gas equation)

P = pressure

V = volume

R (gas constnt)=  0.0821 L.atm/K.mol

T = temperature

n = number of moles for both gases

Solution:

Firstly we will find the number of moles for oxygen and nitrogen gas.

For Oxygen:

n = PV / RT

n = 1.132 atm × 0.495 L / 0.0821 L.atm/K.mol × 298.15 K

  = 0.560 / 24.47

  = 0.0229 moles

For Nitrogen:

n = PV / RT

n = 1.132 atm × 0.877 / 0.0821 L.atm/K.mol × 298.15 K

n = 0.992 / 24.47

  = 0.0406

Total moles = moles for oxygen gas + moles for nitrogen gas

  = 0.0229 moles + 0.0406 moles

n  = 0.0635 moles

Now put the values in formula

PV=nRT

P = nRT / V

P = 0.0635 × 0.0821 L.atm/K.mol × 298.15 K  /  0.536 L

P = 1.554 / 0.536

P = 2.8999 atm

Total pressure in the flask is  2.8999 atm, while assuming the temperature constant.

The total pressure of gas in the flask at the given temperature is 3.2 atm.

The given parameters;

  • volume of oxygen, V₁ = 495 cm³ = 0.495 L
  • volume of nitrogen, V₂ = 877 cm³ = 0.877 L
  • pressure of the gas, P = 114.7 kPa = 1.132 atm
  • volume of the flask, V₃ = 536 cm³ = 0.536 L

The number of moles of the nitrogen is calculated as follows;

[tex]PV = nRT\\\\n = \frac{PV}{RT} \\\\n = \frac{1.132 \times 0.877}{0.0821 \times (25 + 273)} \\\\n = 0.0406 \ mole[/tex]

The number of moles of oxygen is calculated as follows;

[tex]PV = nRT\\\\n = \frac{PV}{RT} \\\\n = \frac{1.132 \times 0.495}{0.0821 \times (25 + 273)} \\\\n = 0.0229 \ mole[/tex]

The total number of moles = 0.0406 mole + 0.0299 mole = 0.0705 mole.

The total pressure of gas in the flask is calculated as follows;

[tex]PV = nRT\\\\P = \frac{nRT}{V} \\\\P = \frac{0.0705 \times 0.0821 \times 298}{0.536} \\\\P = 3.2 \ atm[/tex]

Learn more here:https://brainly.com/question/21912477

RELAXING NOICE
Relax