Answer:
No
Step-by-step explanation:
Let given points are A (44,44,44),B(11,22,11) ,C(55,11,44) and D(22,33,77).
We have to determine the points are co-planar or not.
[tex]AB=B-A=(11,22,11)-(44,44,44)=(-33,-22,-33)[/tex]
[tex]BC=C-A=(55,11,44)-(11,22,11)=(44,-11,33)[/tex]
[tex]CD=D-C=(22,33,77)-(55,11,44)=(-33,22,33)[/tex]
When three vectors A, B and C are co-planar then
[tex](A\times B)\cdot C=0[/tex]
Using the formula
[tex]AB\times BC\times CD=\begin{vmatrix}-33&-22&-33\\44&-11&33\\-33&22&33\end{vmatrix}[/tex]
[tex]AB\times BC\cdot CD=-33(-363-726)+22(1452+1089)-33(968-363)=71874[/tex]
[tex]AB\times BC\cdot CD\neq 0[/tex]
Therefore, A, B,C and D are not co-planar.