Respuesta :

Answers:

1) Circumference to diameter

2) [tex]\frac{15}{\pi} cm[/tex]

3) [tex]10 m[/tex]

4) [tex]27.004 km[/tex]

Step-by-step explanation:

1st question

Let's begin by explaining that the circumference [tex]C[/tex] of a circle is given by the following formula:

[tex]C=2 \pi r[/tex] (1)

Where [tex]r[/tex] is the radius of the circle

In addition, the diameter [tex]d[/tex] is twice the radius:

[tex]d=2r[/tex] (2)

Hence:

[tex]r=\frac{d}{2}[/tex] (3)

Knowing this, we can try with each option and find the one that results in [tex]\pi[/tex]:

Circumference to radius:

[tex]\frac{C}{r}=\frac{2 \pi r}{r}=2 \pi[/tex]

Radius to circumference:

[tex]\frac{r}{C}=\frac{r}{2 \pi r}=\frac{1}{2 \pi}[/tex]

Diameter to circumference:

[tex]\frac{d}{C}=\frac{2r}{2 \pi r}=\frac{1}{\pi}[/tex]

Circumference to diameter:

[tex]\frac{C}{d}=\frac{2 \pi r}{2r}=\pi[/tex] This is the correct option!

2nd question

If the circumference of a circle is [tex]C=15 cm[/tex], applying (1) we have:

[tex]15 cm=2 \pi r[/tex]

Isolating [tex]r[/tex]:

[tex]r=\frac{15}{2 \pi} cm[/tex]

Multiplying by [tex]2[/tex]:

[tex]d=2r=2\frac{15}{2 \pi} cm[/tex]

Then, the diameter is:

[tex]d=\frac{15}{\pi} cm[/tex]

3rd question

If the circumference of the circle is [tex]C=30 m[/tex], applying (1) we have:

[tex]30 m=2 \pi r[/tex]

Isolating [tex]r[/tex]:

[tex]r=\frac{30}{2 \pi} m[/tex]

Multiplying by [tex]2[/tex]:

[tex]d=2r=2\frac{30}{2 \pi} m[/tex]

Then, the diameter is:

[tex]d=\frac{30}{\pi} cm=9.54 m \approx 10 m[/tex]

4th question

If the diameter of the Large Hadron Collider (LHC) is [tex]d=8.6 km[/tex]

Applying (3) to find the radius:

[tex]r=\frac{8.6 km}{2}[/tex]

[tex]r=4.3 km[/tex]

Calculating the circumference:

[tex]C=2 (3.14)(4.3 km)[/tex]

[tex]C=27.004 km[/tex] This is the circumference of the LHC

RELAXING NOICE
Relax