Answer:
[tex](3x^3y^{-2})^2[/tex] = [tex]\frac{576}{625}[/tex]
Step-by-step explanation:
Given:
[tex]x=-2[/tex]
[tex]y=5[/tex]
To evaluate:
[tex](3x^3y^{-2})^2[/tex]
Solution:
Applying property of exponents to simplify the expression.
Property: [tex](a^b)^c= a^{bc}[/tex]
So, we have: [tex](3x^3y^{-2})^2[/tex]
⇒ [tex]3^2x^6y^{-4}[/tex]
⇒ [tex]9x^6y^{-4}[/tex]
Property : [tex]a^{-b}=\frac{1}{a^b}[/tex]
⇒ [tex]\frac{9x^6}{y^4}[/tex]
Now, plugging in values of [tex]x[/tex] and [tex]y[/tex].
⇒ [tex]\frac{9(-2)^6}{5^4}[/tex]
⇒ [tex]\frac{9\times 64}{625}[/tex]
⇒ [tex]\frac{576}{625}[/tex] (Answer)