Answer :
(1) The values of [tex](\Delta G_{rxn})[/tex] is, -120.4 kJ/mol
(2) The values of [tex](\Delta G_{rxn})[/tex] is, 116.7 kJ/mol
Explanation :
(1) The given balanced chemical reaction is,
[tex]H_2(g)+O_2(g)\rightarrow H_2O_2(l)[/tex]
Now we have to calculate the [tex](\Delta G_{rxn})[/tex].
[tex]\Delta G_{rxn}=G_f_{product}-G_f_{reactant}[/tex]
[tex]\Delta G_{rxn}=[n_{H_2O_2(l)}\times \Delta G_f^0_{(H_2O_2(l))}]-[n_{H_2(g)}\times \Delta G_f^0_{(H_2(g))}+n_{O_2(g)}\times \Delta G_f^0_{(O_2(g))}][/tex]
where,
[tex]\Delta G_{rxn}[/tex] = enthalpy of reaction = ?
n = number of moles
[tex]\Delta G_f^0_{(H_2O_2(l))}=-120.4kJ/mol[/tex]
[tex]\Delta G_f^0_{(H_2(g))}=0kJ/mol[/tex]
[tex]\Delta G_f^0_{(O_2(g))}=0kJ/mol[/tex]
Now put all the given values in this expression, we get:
[tex]\Delta G_{rxn}=[1mole\times (-120.4kJ/mol)]-[1mole\times (0kJ/mol)+1mole\times (0kJ/mol)][/tex]
[tex]\Delta G_{rxn}=-120.4kJ/mol[/tex]
(2) The given balanced chemical reaction is,
[tex]H_2O(l)+\frac{1}{2}O_2(g)\rightarrow H_2O_2(l)[/tex]
Now we have to calculate the [tex](\Delta G_{rxn})[/tex].
[tex]\Delta G_{rxn}=G_f_{product}-G_f_{reactant}[/tex]
[tex]\Delta G_{rxn}=[n_{H_2O_2(l)}\times \Delta G_f^0_{(H_2O_2(l))}]-[n_{H_2O(l)}\times \Delta G_f^0_{(H_2O(l))}+n_{O_2(g)}\times \Delta G_f^0_{(O_2(g))}][/tex]
where,
[tex]\Delta G_{rxn}[/tex] = enthalpy of reaction = ?
n = number of moles
[tex]\Delta G_f^0_{(H_2O_2(l))}=-120.4kJ/mol[/tex]
[tex]\Delta G_f^0_{(H_2O(l))}=-237.1kJ/mol[/tex]
[tex]\Delta G_f^0_{(O_2(g))}=0kJ/mol[/tex]
Now put all the given values in this expression, we get:
[tex]\Delta G_{rxn}=[1mole\times (-120.4kJ/mol)]-[1mole\times (-237.1kJ/mol)+\frac{1}{2}mole\times (0kJ/mol)][/tex]
[tex]\Delta G_{rxn}=116.7kJ/mol[/tex]