Suppose that the algebraic expression for the z-transform of x[n] is:
X(z) = (1 − 1/4 z ⁻²) / (1 + 1/4 z ⁻²)(1 + 543 z⁻¹ + 3/8 z⁻²)
How many different regions of convergence could correspond to X(z)?

Respuesta :

Answer:

z >[tex]\frac{3}{4}[/tex]

Explanation:

step 1:

Calculating the poles for the given equation

first we have to consider the first term of denominator,

1+[tex]\frac{1}{4} z^{-2}[/tex]=0

[tex]z^{2}[/tex] =-[tex]\frac{1}{4}[/tex]

z=±j× [tex]\frac{1}{2}[/tex]

now consider the second term of denominator

1+[tex]\frac{5}{4} z^{-1} } +\frac{3}{8} z^{-2}=0[/tex]

[tex]z^{2} +\frac{5}{4}z^{1}+\frac{3}{8}=0[/tex]

[tex](z+\frac{1}{2}).(z+\frac{3}{4})=0[/tex]

[tex]z=-\frac{1}{2} and \frac{-3}{4}[/tex]

step 2:

[tex]z=\frac{-j}{2} and \frac{j}{2} and \frac{-1}{2} and \frac{-3}{4}[/tex]

then,

z =[tex]\frac{1}{2} and \frac{3}{4}[/tex]

representing the ROC,

-0< z <[tex]\frac{1}{2}[/tex]

[tex]\frac{1}{2} <[/tex] z <[tex]\frac{3}{4}[/tex]

-z >[tex]\frac{3}{4}[/tex]

result:

z >[tex]\frac{3}{4}[/tex]

note:

Bold z represent Modulus

RELAXING NOICE
Relax