Answer:
z >[tex]\frac{3}{4}[/tex]
Explanation:
step 1:
Calculating the poles for the given equation
first we have to consider the first term of denominator,
1+[tex]\frac{1}{4} z^{-2}[/tex]=0
[tex]z^{2}[/tex] =-[tex]\frac{1}{4}[/tex]
z=±j× [tex]\frac{1}{2}[/tex]
now consider the second term of denominator
1+[tex]\frac{5}{4} z^{-1} } +\frac{3}{8} z^{-2}=0[/tex]
[tex]z^{2} +\frac{5}{4}z^{1}+\frac{3}{8}=0[/tex]
[tex](z+\frac{1}{2}).(z+\frac{3}{4})=0[/tex]
[tex]z=-\frac{1}{2} and \frac{-3}{4}[/tex]
step 2:
[tex]z=\frac{-j}{2} and \frac{j}{2} and \frac{-1}{2} and \frac{-3}{4}[/tex]
then,
z =[tex]\frac{1}{2} and \frac{3}{4}[/tex]
representing the ROC,
-0< z <[tex]\frac{1}{2}[/tex]
[tex]\frac{1}{2} <[/tex] z <[tex]\frac{3}{4}[/tex]
-z >[tex]\frac{3}{4}[/tex]
result:
z >[tex]\frac{3}{4}[/tex]
note:
Bold z represent Modulus