A string vibrates according to the equation y(x,t) = 2.0sin(0.16x)cos(750t), where x and y are in centimeters and t is in seconds.

(a) What are the amplitude and velocity of the component waves whose superposition give rise to this vibration?

(b) What is the distance between nodes?

(c) What is the velocity of a particle of the string at the position x = 9.0 cm when t=5x10-3

Respuesta :

Answer with Explanation:

We are given that an equation

[tex]y(x,t)=2.0sin(0.16x)cos(750t)[/tex]

Where x and y are in cm and t is in sec.

a.Compare with

[tex]y(x,t)=Asin(kx)cos(\omega t)[/tex]

Where Amplitude=[tex]\frac{A}{2}[/tex]

Amplitude=[tex]\frac{2}{2}=1 cm[/tex]

k=0.16 and [tex]\omega=750 rad/s[/tex]

Velocity=[tex]\frac{\omega}{k}[/tex]

Velocity=[tex]\frac{750}{0.16}=4687.5cm/s=\frac{45687.5}{100}m/s=46.875m/s[/tex]

1 m=100 cm

Velocity of the component wave=46.875m/s

b.The distance between two nodes=[tex]\frac{\lambda}{2}[/tex]

[tex]\lambda=\frac{2\pi}{k}=\frac{2\times 3.14}{0.16}=39.3cm[/tex]

Therefore, distance between two nodes=[tex]\frac{39.3}{2}=19.65 cm[/tex]

c.x=9 cm,

t=[tex]5\times 10^{-3}s[/tex]

[tex]v(x,t)=\frac{dy}{dt}[/tex]

Using the formula

[tex]v(x,t)=2sin(0.16x)\times (-750sin(750t))[/tex]

[tex]v(x,t)=-1500sin(0.16x)sin(750t)[/tex]

Substitute the values

[tex]v(x,t)=-1500sin(0.16\times 9)sin(750\times 5\times 10^{-3})[/tex]

[tex]v(x,t)=850cm/s=\frac{850}{100}m/s[/tex]

[tex]v(x,t)=8.5m/s[/tex]

RELAXING NOICE
Relax