Answer with Explanation:
We are given that an equation
[tex]y(x,t)=2.0sin(0.16x)cos(750t)[/tex]
Where x and y are in cm and t is in sec.
a.Compare with
[tex]y(x,t)=Asin(kx)cos(\omega t)[/tex]
Where Amplitude=[tex]\frac{A}{2}[/tex]
Amplitude=[tex]\frac{2}{2}=1 cm[/tex]
k=0.16 and [tex]\omega=750 rad/s[/tex]
Velocity=[tex]\frac{\omega}{k}[/tex]
Velocity=[tex]\frac{750}{0.16}=4687.5cm/s=\frac{45687.5}{100}m/s=46.875m/s[/tex]
1 m=100 cm
Velocity of the component wave=46.875m/s
b.The distance between two nodes=[tex]\frac{\lambda}{2}[/tex]
[tex]\lambda=\frac{2\pi}{k}=\frac{2\times 3.14}{0.16}=39.3cm[/tex]
Therefore, distance between two nodes=[tex]\frac{39.3}{2}=19.65 cm[/tex]
c.x=9 cm,
t=[tex]5\times 10^{-3}s[/tex]
[tex]v(x,t)=\frac{dy}{dt}[/tex]
Using the formula
[tex]v(x,t)=2sin(0.16x)\times (-750sin(750t))[/tex]
[tex]v(x,t)=-1500sin(0.16x)sin(750t)[/tex]
Substitute the values
[tex]v(x,t)=-1500sin(0.16\times 9)sin(750\times 5\times 10^{-3})[/tex]
[tex]v(x,t)=850cm/s=\frac{850}{100}m/s[/tex]
[tex]v(x,t)=8.5m/s[/tex]