Answer:
Therefore area of a triangle whose vertices are (0,0), (4,2), (-1,2) is
5 units².
Step-by-step explanation:
Given:
Let the vertices be,
point A( x₁ , y₁) ≡ ( 0 , 0)
point B( x₂ , y₂) ≡ (4 , 2)
point C(x₃ , y₃ ) ≡ (-1 , 2)
To Find:
Area of Triangle = ?
Solution:
If the Vertices A( x₁ , y₁), B( x₂ , y₂) and C(x₃ , y₃ ) then the Area of Triangle is given by
[tex]\textrm{Area of Triangle}=\dfrac{1}{2}(x_{1}(y_{2}-y_{3})+x_{2}(y_{3}-y_{1})+x_{3}(y_{1}-y_{2}))[/tex]
Substituting the values we get
[tex]\textrm{Area of Triangle}=\dfrac{1}{2}(0(2-2)+4(2-0)+(-1)(0-2))[/tex]
[tex]\textrm{Area of Triangle}=\dfrac{1}{2}(0+8+2))=\dfrac{10}{2}=5\ units^{2}[/tex]
Therefore area of a triangle whose vertices are (0,0), (4,2), (-1,2) is
5 units².