Answer:
8 lilies and 12 tulips flowers
Step-by-step explanation:
Let x be the lilies and y be the tulips flower.
Given:
Total flowers = 20
Lilies cost = $3
Tulip cost = $2
Bouquet cost = $48
Solution:
A bouquet of lilies and tulips has 20 flowers, so sum of the lilies and tulip flower is equal to 20 flower,
[tex]x+y =20[/tex] -----------------(1)
Since lilies cost $3 each, tulip cost $2 each and bouquet cost is equal to $48, so we write the equation as.
[tex]3x+2y=48[/tex] ------------------(2)
From equation 1.
[tex]x=20-y[/tex] --------------(3)
Substitute [tex]x=20-y[/tex] in equation 2 and simplify.
[tex]3(20-y)+2y=48[/tex]
[tex]60-3y+2y=48[/tex]
[tex]60-y=48[/tex]
[tex]y=60-48[/tex]
[tex]y=12[/tex]
Substitute [tex]y=12[/tex] in equation 3.
[tex]x = 20-12[/tex]
[tex]x=8[/tex]
Therefore, 8 lilies and 12 tulips flowers in the bouquet.