Write down the elementary matrix corresponding to the following row operations on 4 × 4 matrices: (a) Add the third row to the fourth row. (b) Subtract the fourth row from the third row. (c) Add 3 times the last row to the first row. (d) Subtract twice the second row from the fourth row.

Respuesta :

ridxee

Answer:

[tex]\left[\begin{array}{cccc}1&0&3&3\\0&1&0&0\\0&0&0&-1\\0&-2&1&1\end{array}\right][/tex]

Step-by-step explanation:

Hi,

Considering that any elementary matrix can be obtained from the identity matrix of same dimensions using row operations, we consider our starting matrix to be:

[tex]\left[\begin{array}{cccc}1&0&0&0\\0&1&0&0\\0&0&1&0\\0&0&0&1\end{array}\right][/tex]

For part a) we add the third row to fourth row, however nothing happens to the rest of the rows. Remember, the only change we see is in row 4.

[tex]\left[\begin{array}{ccc}Row 1\\Row 2\\Row 3\\Row 4 + Row 3\end{array}\right][/tex]

Addition in matrix is element-wise.

[tex]\left[\begin{array}{cccc}1&0&0&0\\0&1&0&0\\0&0&1&0\\0+0&0+0&0+1&1+0\end{array}\right][/tex]

We reach the following matrix at the end of part a)

[tex]\left[\begin{array}{cccc}1&0&0&0\\0&1&0&0\\0&0&1&0\\0&0&1&1\end{array}\right][/tex]

b)

We begin with the matrix: [tex]\left[\begin{array}{cccc}1&0&0&0\\0&1&0&0\\0&0&1&0\\0&0&1&1\end{array}\right][/tex]

To subtract fourth row from third means:

[tex]\left[\begin{array}{ccc}Row 1\\Row 2\\Row 3 - Row 4\\Row 4\end{array}\right][/tex]

All matrix operations are element-wise:

[tex]\left[\begin{array}{cccc}1&0&0&0\\0&1&0&0\\0-0&0-0&1-1&0-1\\0&0&1&1\end{array}\right][/tex]

we reach the following matrix at the end of part b)

[tex]\left[\begin{array}{cccc}1&0&0&0\\0&1&0&0\\0&0&0&-1\\0&0&1&1\end{array}\right][/tex]

c)

We shall continue this from the matrix we reached at end of part b)

Add 3 times Row 4 to Row 1:

[tex]\left[\begin{array}{ccc}(3 times Row 4) + Row 1\\Row 2\\Row 3\\Row 4\end{array}\right][/tex]

Remember, all matrix operations are element-wise:

[tex]\left[\begin{array}{cccc}(3*0) +1&(3*0)+0&(3*1)+0&(3*1)+0\\0&1&0&0\\0&0&0&-1\\0&0&1&1\end{array}\right][/tex]

Completing the operations in the matrix, we reach the following matrix at the end of part c)

[tex]\left[\begin{array}{cccc}1&0&3&3\\0&1&0&0\\0&0&0&-1\\0&0&1&1\end{array}\right][/tex]

d)

Continuing where we left in part c), we need to subtract two times the second row from the fourth row:

[tex]\left[\begin{array}{ccc}Row 1\\Row 2\\Row 3\\Row 4 - (2 * Row 2)\end{array}\right][/tex]

Applying element-wise operations:

[tex]\left[\begin{array}{cccc}1&0&3&3\\0&1&0&0\\0&0&0&-1\\0-(2*0)&0-(2*1)&1-(2*0)&1-(2*0)\end{array}\right][/tex]

Completing the operations, we reach the following matrix at the end of part d)[tex]\left[\begin{array}{cccc}1&0&3&3\\0&1&0&0\\0&0&0&-1\\0&-2&1&1\end{array}\right][/tex]

This is the final answer after completing all operations on 4x4 matrix.

ACCESS MORE
EDU ACCESS