Respuesta :
Answer:
[tex]\left[\begin{array}{cccc}1&0&3&3\\0&1&0&0\\0&0&0&-1\\0&-2&1&1\end{array}\right][/tex]
Step-by-step explanation:
Hi,
Considering that any elementary matrix can be obtained from the identity matrix of same dimensions using row operations, we consider our starting matrix to be:
[tex]\left[\begin{array}{cccc}1&0&0&0\\0&1&0&0\\0&0&1&0\\0&0&0&1\end{array}\right][/tex]
For part a) we add the third row to fourth row, however nothing happens to the rest of the rows. Remember, the only change we see is in row 4.
[tex]\left[\begin{array}{ccc}Row 1\\Row 2\\Row 3\\Row 4 + Row 3\end{array}\right][/tex]
Addition in matrix is element-wise.
[tex]\left[\begin{array}{cccc}1&0&0&0\\0&1&0&0\\0&0&1&0\\0+0&0+0&0+1&1+0\end{array}\right][/tex]
We reach the following matrix at the end of part a)
[tex]\left[\begin{array}{cccc}1&0&0&0\\0&1&0&0\\0&0&1&0\\0&0&1&1\end{array}\right][/tex]
b)
We begin with the matrix: [tex]\left[\begin{array}{cccc}1&0&0&0\\0&1&0&0\\0&0&1&0\\0&0&1&1\end{array}\right][/tex]
To subtract fourth row from third means:
[tex]\left[\begin{array}{ccc}Row 1\\Row 2\\Row 3 - Row 4\\Row 4\end{array}\right][/tex]
All matrix operations are element-wise:
[tex]\left[\begin{array}{cccc}1&0&0&0\\0&1&0&0\\0-0&0-0&1-1&0-1\\0&0&1&1\end{array}\right][/tex]
we reach the following matrix at the end of part b)
[tex]\left[\begin{array}{cccc}1&0&0&0\\0&1&0&0\\0&0&0&-1\\0&0&1&1\end{array}\right][/tex]
c)
We shall continue this from the matrix we reached at end of part b)
Add 3 times Row 4 to Row 1:
[tex]\left[\begin{array}{ccc}(3 times Row 4) + Row 1\\Row 2\\Row 3\\Row 4\end{array}\right][/tex]
Remember, all matrix operations are element-wise:
[tex]\left[\begin{array}{cccc}(3*0) +1&(3*0)+0&(3*1)+0&(3*1)+0\\0&1&0&0\\0&0&0&-1\\0&0&1&1\end{array}\right][/tex]
Completing the operations in the matrix, we reach the following matrix at the end of part c)
[tex]\left[\begin{array}{cccc}1&0&3&3\\0&1&0&0\\0&0&0&-1\\0&0&1&1\end{array}\right][/tex]
d)
Continuing where we left in part c), we need to subtract two times the second row from the fourth row:
[tex]\left[\begin{array}{ccc}Row 1\\Row 2\\Row 3\\Row 4 - (2 * Row 2)\end{array}\right][/tex]
Applying element-wise operations:
[tex]\left[\begin{array}{cccc}1&0&3&3\\0&1&0&0\\0&0&0&-1\\0-(2*0)&0-(2*1)&1-(2*0)&1-(2*0)\end{array}\right][/tex]
Completing the operations, we reach the following matrix at the end of part d)[tex]\left[\begin{array}{cccc}1&0&3&3\\0&1&0&0\\0&0&0&-1\\0&-2&1&1\end{array}\right][/tex]
This is the final answer after completing all operations on 4x4 matrix.