Respuesta :
The right answer is Option 2: A right triangle with side length of √47 and hypotenuse of 10.
Step-by-step explanation:
We know that;
[tex]a^2 + b^2 = c^2[/tex]
We will put the unknown length as √53 to check the solution.
Option 1: a = 6 , b = √53 , c = √91
[tex](6)^2+(\sqrt{53})^2=(\sqrt{91})^2\\36+53=91\\89\neq 91[/tex]
Option 2: a=√47, b = √53, c = 10
[tex](\sqrt{47})^2+(\sqrt{53})^2=(10)^2\\47+53=100\\100=100[/tex]
Option 3: a = √19, b=√53, c= √34
[tex](\sqrt{19})^2+(\sqrt{53})^2=(\sqrt{34})^2\\19+53=34\\72\neq 34[/tex]
Option 4: a=√73, b=√53, c=20
[tex](\sqrt{73})^2+(\sqrt{53})^2=(20)^2\\73+53=400\\126\neq 400[/tex]
Option 2 satisfies pythagoras theorem.
Therefore;
The right answer is Option 2: A right triangle with side length of √47 and hypotenuse of 10.
Keywords: pythagoras theorem, square root
Learn more about pythagoras theorem at:
- brainly.com/question/11203617
- brainly.com/question/11253316
#LearnwithBrainly
Otras preguntas
