Explanation:
Relation between temperature and activation energy according to Arrhenius equation is as follows.
k = [tex]A exp^{\frac{-E_{a}}{RT}}[/tex]
where, k = rate constant
A = pre-exponential factor
[tex]E_{a}[/tex] = activation energy
R = gas constant
T = temperature in kelvin
Also,
[tex]ln (\frac{k_{2}}{k_{1}}) = (\frac{-E_{a}}{R}) \times (\frac{1}{T_{2}} - \frac{1}{T_{2}})[/tex]
[tex]T_{1}[/tex] = [tex]244^{o}C[/tex] = (244 + 273) K = 517.15 K
[tex]T_{2}[/tex] = [tex]324^{o}C[/tex] = (597.15 + 273) K = 597.15 K
[tex]k_{1}[/tex] = 6.7 [tex]M^{-1} s^{-1}[/tex], [tex]k_{2}[/tex] = ?
R = 8.314 J/mol K
[tex]E_{a}[/tex] = 71.0 kJ/mol = 71000 J/mol
Putting the given values into the above formula as follows.
[tex]ln (\frac{k_{2}}{6.7}) = (\frac{-71000}{8.314} \times (\frac{1}{597.15} - \frac{1}{517.15})[/tex]
= 2.2123
[tex]\frac{k_{2}}{6.7} = exp(2.2123)[/tex]
= 9.1364
[tex]k_{2} = 61 M^{-1}s^{-1}[/tex]
Thus, we can conclude that rate constant of this reaction is [tex]61 M^{-1}s^{-1}[/tex].