Answer:
The variance for Loss L is 90.1.
Step-by-step explanation:
As per given data
As the distribution is exponential for the Loss L thus the function is
[tex]F(x)=1-e^{-\lambda x}[/tex]
Where λ is given as
[tex]\lambda=\sqrt{\frac{1}{var}}[/tex]
Now as per the given condition
[tex]F(2)=1.9F(1)\\1-e^{-2\lambda }=1.9 (1-e^{-\lambda })\\\frac{1-e^{-2\lambda }}{1-e^{-\lambda }}=1.9\\\frac{(1-e^{-\lambda })(1+e^{-\lambda })}{1-e^{-\lambda }}=1.9\\1+e^{-\lambda }=1.9\\e^{-\lambda }=1.9-1\\e^{-\lambda }=0.9\\\lambda =-ln(0.9)\\\lambda =0.10536\\[/tex]
Solving for variance
[tex]\lambda=\sqrt{\frac{1}{var}}\\var=\frac{1}{\lambda^2}\\var=\frac{1}{0.10536^2}\\var=90.1[/tex]
So the variance is 90.1.