Respuesta :
Answer :
The number of molecules of [tex]O_2[/tex] are, [tex]9.88\times 10^{22}[/tex]
The theoretical yield of [tex]SO_3[/tex] is, 8.72 grams.
Explanation :
The given balanced chemical reaction is:
[tex]2S+3O_2\rightarrow 2SO_3[/tex]
First we have to calculate the moles of S.
[tex]\text{Moles of }S=\frac{\text{Mass of }S}{\text{Molar mass of }S}[/tex]
Molar mass of S = 32 g/mole
[tex]\text{Moles of }S=\frac{3.50g}{32g/mol}=0.109mole[/tex]
Now we have to calculate the moles of [tex]O_2[/tex]
From the balanced chemical reaction, we conclude that:
As, 2 mole of [tex]S[/tex] react with 3 mole of [tex]O_2[/tex]
So, 0.109 moles of [tex]S[/tex] react with [tex]\frac{0.109}{2}\times 3=0.164[/tex] moles of [tex]O_2[/tex]
Now we have to calculate the number of molecules of [tex]O_2[/tex]
As, 1 mole of [tex]O_2[/tex] contains [tex]6.022\times 10^{23}[/tex] number of [tex]O_2[/tex] molecules.
So, 0.164 mole of [tex]O_2[/tex] contains [tex]0.164\times 6.022\times 10^{23}=9.88\times 10^{22}[/tex] number of [tex]O_2[/tex] molecules.
Thus, the number of molecules of [tex]O_2[/tex] are, [tex]9.88\times 10^{22}[/tex]
Now we have to calculate the moles of [tex]SO_3[/tex]
From the reaction, we conclude that
As, 2 mole of [tex]S[/tex] react to give 2 mole of [tex]SO_3[/tex]
So, 0.109 moles of [tex]S[/tex] react to give 0.109 moles of [tex]SO_3[/tex]
Now we have to calculate the mass of [tex]SO_3[/tex]
[tex]\text{ Mass of }SO_3=\text{ Moles of }SO_3\times \text{ Molar mass of }SO_3[/tex]
Molar mass of [tex]SO_3[/tex] = 80 g/mol
[tex]\text{ Mass of }SO_3=(0.109moles)\times (80g/mole)=8.72g[/tex]
Thus, the theoretical yield of [tex]SO_3[/tex] is, 8.72 grams.
