Determine whether the given differential equation is exact. If it is exact, solve it. (If it is not exact, enter NOT.) (tan(x) − sin(x) sin(y)) dx + cos(x) cos(y) dy = 0

Respuesta :

Answer:

[tex]f(x,y)=ln secx+cosx siny+C[/tex]

Step-by-step explanation:

We are given that DE

[tex](tanx-sinx siny)dx+cosxcosydy=0[/tex]

We have to determine given DE is exact or not.

Compare it with Mdx+Ndy=0

[tex]M=tanx-sinx siny[/tex]

[tex]N=cosxcosy[/tex]

[tex]\frac{\partial M}{\partial y}=[/tex][tex]M_y=-sinxcosy[/tex]

[tex]\frac{\partial N}{\partial x}=N_x=-sinxcosy[/tex]

Therefore, [tex]M_y=N_x[/tex]

If DE is exact then [tex]M_y=N_x[/tex]

Hence,it is exact.

[tex]M=\frac{\partial f}{\partial x}=tanx-sinxsiny[/tex]

Integrate w.r.t x on both sides

[tex]f(x,y)=\int(tanx-sinxsiny)dx[/tex]

[tex]f(x,y)=lnsecx+cosxsiny+\phi(y)[/tex]...(1)

By using the formula

[tex]\int tanxdx=lnsecx+C,\int sinxdx=-cosx+C[/tex]

Differentiate partially  equation (1) w.r.t y

[tex]\frac{\partial f}{\partial y}=cosxcosy+\phi'(y)[/tex]

By using the formula:

[tex]\frac{d(sinx)}{dx}=cosx[/tex]

[tex]N=\frac{\partial f}{\partial y}=cosxcosy=cosxcosy+\phi'(y)[/tex]

[tex]\phi'(y)=cosxcosy-cosxcosy=0[/tex]

[tex]\phi'(y)=0[/tex]

Integrate  w.r.t y

[tex]\phi(y)=C[/tex]

Substitute the value

[tex]f(x,y)=ln secx+cosx siny+C[/tex]

RELAXING NOICE
Relax