Answer:
[tex]f(x,y)=ln secx+cosx siny+C[/tex]
Step-by-step explanation:
We are given that DE
[tex](tanx-sinx siny)dx+cosxcosydy=0[/tex]
We have to determine given DE is exact or not.
Compare it with Mdx+Ndy=0
[tex]M=tanx-sinx siny[/tex]
[tex]N=cosxcosy[/tex]
[tex]\frac{\partial M}{\partial y}=[/tex][tex]M_y=-sinxcosy[/tex]
[tex]\frac{\partial N}{\partial x}=N_x=-sinxcosy[/tex]
Therefore, [tex]M_y=N_x[/tex]
If DE is exact then [tex]M_y=N_x[/tex]
Hence,it is exact.
[tex]M=\frac{\partial f}{\partial x}=tanx-sinxsiny[/tex]
Integrate w.r.t x on both sides
[tex]f(x,y)=\int(tanx-sinxsiny)dx[/tex]
[tex]f(x,y)=lnsecx+cosxsiny+\phi(y)[/tex]...(1)
By using the formula
[tex]\int tanxdx=lnsecx+C,\int sinxdx=-cosx+C[/tex]
Differentiate partially equation (1) w.r.t y
[tex]\frac{\partial f}{\partial y}=cosxcosy+\phi'(y)[/tex]
By using the formula:
[tex]\frac{d(sinx)}{dx}=cosx[/tex]
[tex]N=\frac{\partial f}{\partial y}=cosxcosy=cosxcosy+\phi'(y)[/tex]
[tex]\phi'(y)=cosxcosy-cosxcosy=0[/tex]
[tex]\phi'(y)=0[/tex]
Integrate w.r.t y
[tex]\phi(y)=C[/tex]
Substitute the value
[tex]f(x,y)=ln secx+cosx siny+C[/tex]