Respuesta :
Answer:
[tex]\Delta T=45.63^{\circ}C[/tex]
Explanation:
Given:
- mass of hammer, [tex]m=1.8\ kg[/tex]
- speed of the hammer, [tex]v=7.8\ m.s^{-1}[/tex]
- part of kinetic energy of hammer getting transformed into heat, [tex]F=60\%[/tex]
- mass of nail, [tex]m'=8\ g=0.008\ kg[/tex]
- we've specific heat of aluminium, [tex]c=900\ J.kg^{-1}.^{\circ}C^{-1}[/tex]
Total kinetic energy given to the nail:
[tex]KE=10\times \frac{1}{2} \times m.v^2[/tex] (Since the aluminium nail is struck 10 times)
The heat that flows to the nail is 0.6 times of the total kinetic energy:
[tex]Q=0.6\times 10\times 0.5\times1.8\times 7.8^2[/tex]
[tex]Q=328.536\ J[/tex]
From the equation of heat:
[tex]Q=m'c.\Delta T[/tex]
[tex]328.536=0.008\times 900\times \Delta T[/tex]
[tex]\Delta T=45.63^{\circ}C[/tex] is the increase in the temperature of the nail.
The increase in the temperature will be "45.63°C".
According to the question,
Mass,
- [tex]m = 1.8 \ kg[/tex]
Speed,
- [tex]v = 7.8 \ m.s^{-1}[/tex]
K.E getting transformed,
- [tex]F = 60[/tex]%
Mass of nail,
- [tex]m' = 8 \ g[/tex]
or,
[tex]= 0.008 \ kg[/tex]
Specific heat,
- [tex]c = 900 \ J.kg^{-1}.^{\circ} C^{-1}[/tex]
Now,
The total K.E given to the nail will be:
= [tex]10\times \frac{1}{2} mv^\\2[/tex]
The heat flows will be:
[tex]Q = 0.6\times 10\times 0.5\times 1.8\times 7.8^2[/tex]
[tex]= 328.536 \ J[/tex]
By using the equation of heat, we get
→ [tex]Q = m'c.\Delta T[/tex]
→ [tex]328.536=0.008\times 900\times \Delta T[/tex]
→ [tex]\Delta T = 45.63^{\circ} C[/tex]
Thus the above response is correct.
Learn more:
https://brainly.com/question/13188408
Otras preguntas
