Answer:
a. v(t)= -6.78[tex]e^{-16.33t}[/tex] + 16.33 b. 16.33 m/s
Step-by-step explanation:
The differential equation for the motion is given by mv' = mg - γv. We re-write as mv' + γv = mg ⇒ v' + γv/m = g. ⇒ v' + kv = g. where k = γ/m.Since this is a linear first order differential equation, We find the integrating factor μ(t)=[tex]e^{\int\limits^ {}k \, dt }[/tex] =[tex]e^{kt}[/tex]. We now multiply both sides of the equation by the integrating factor.
μv' + μkv = μg ⇒ [tex]e^{kt}[/tex]v' + k[tex]e^{kt}[/tex]v = g[tex]e^{kt}[/tex] ⇒ [v[tex]e^{kt}[/tex]]' = g[tex]e^{kt}[/tex]. Integrating, we have
∫ [v[tex]e^{kt}[/tex]]' = ∫g[tex]e^{kt}[/tex]
v[tex]e^{kt}[/tex] = [tex]\frac{g}{k}[/tex][tex]e^{kt}[/tex] + c
v(t)= [tex]\frac{g}{k}[/tex] + c[tex]e^{-kt}[/tex].
From our initial conditions, v(0) = 9.55 m/s, t = 0 , g = 9.8 m/s², γ = 9 kg/s , m = 15 kg. k = y/m. Substituting these values, we have
9.55 = 9.8 × 15/9 + c[tex]e^{-16.33 * 0}[/tex] = 16.33 + c
c = 9.55 -16.33 = -6.78.
So, v(t)= 16.33 - 6.78[tex]e^{-16.33t}[/tex]. m/s = - 6.78[tex]e^{-16.33t}[/tex] + 16.33 m/s
b. Velocity of object at time t = 0.5
At t = 0.5, v = - 6.78[tex]e^{-16.33 x 0.5}[/tex] + 16.33 m/s = 16.328 m/s ≅ 16.33 m/s