Respuesta :
Answer:
[tex]y=4-e^{-x-C}[/tex]
Step-by-step explanation:
Differential equation is an equation consisting of variables and derivatives.
A variable is a term whose value varies.
Integration is used to find area under the curve and to find the volume.
In [tex]\int f(x)\,dx[/tex], x is a variable of integration and f(x) is the integrand.
Given:
[tex]\frac{\mathrm{d} y}{\mathrm{d} x}=4-y[/tex]
Formulae Used:
[tex]\int \frac{dy}{y}=\ln y\\\int dx=x\\\ln a=b\Rightarrow a=e^b[/tex]
Integrate both sides.
[tex]\int \frac{dy}{4-y}=\int dx\\-\ln (4-y)=x+C\\4-y=e^{-x-C}\\y=4-e^{-x-C}\\[/tex]
The solution of differential equation is , [tex]ln(\frac{1}{y-4} )=x+c[/tex]
Given differential equation is,
[tex]\frac{dy}{dx}=4-y\\\\-\frac{1}{y-4}dy =dx[/tex]
Integrate both side.
[tex]-ln(y-4)=x+c\\\\ln(\frac{1}{y-4} )=x+c[/tex]
Learn more:
https://brainly.com/question/1164377
