Respuesta :
Option A: [tex]O(0,0), S(0,a), T(a,a), W(a,0)[/tex]
Option D: [tex]O(0,0), S(a,0), T(a,a), W(0,a)[/tex]
Step-by-step explanation:
Option A: [tex]O(0,0), S(0,a), T(a,a), W(a,0)[/tex]
To find the sides of a square, let us use the distance formula,
[tex]d=\sqrt{\left(x_{2}-x_{1}\right)^{2}+\left(y_{2}-y_{1}\right)^{2}}[/tex]
Now, we shall find the length of the square,
[tex]\begin{array}{l}{\text { Length } O S=\sqrt{(0-0)^{2}+(a-0)^{2}}=\sqrt{a^{2}}=a} \\{\text { Length } S T=\sqrt{(a-0)^{2}+(a-a)^{2}}=\sqrt{a^{2}}=a} \\{\text { Length } T W=\sqrt{(a-a)^{2}+(0-a)^{2}}=\sqrt{a^{2}}=a} \\{\text { Length } O W=\sqrt{(a-0)^{2}+(0-0)^{2}}=\sqrt{a^{2}}=a}\end{array}[/tex]
Thus, the square with vertices [tex]O(0,0), S(0,a), T(a,a), W(a,0)[/tex] has sides of length a.
Option B: [tex]O(0,0), S(0,a), T(2a,2a), W(a,0)[/tex]
Now, we shall find the length of the square,
[tex]\begin{aligned}&\text { Length } O S=\sqrt{(0-0)^{2}+(a-0)^{2}}=\sqrt{a^{2}}=a\\&\text {Length } S T=\sqrt{(2 a-0)^{2}+(2 a-a)^{2}}=\sqrt{5 a^{2}}=a \sqrt{5}\\&\text {Length } T W=\sqrt{(a-2 a)^{2}+(0-2 a)^{2}}=\sqrt{2 a^{2}}=a \sqrt{2}\\&\text {Length } O W=\sqrt{(a-0)^{2}+(0-0)^{2}}=\sqrt{a^{2}}=a\end{aligned}[/tex]
This is not a square because the lengths are not equal.
Option C: [tex]O(0,0), S(0,2a), T(2a,2a), W(2a,0)[/tex]
Now, we shall find the length of the square,
[tex]\begin{array}{l}{\text { Length OS }=\sqrt{(0-0)^{2}+(2 a-0)^{2}}=\sqrt{4 a^{2}}=2 a} \\{\text { Length } S T=\sqrt{(2 a-0)^{2}+(2 a-2 a)^{2}}=\sqrt{4 a^{2}}=2 a} \\{\text { Length } T W=\sqrt{(2 a-2 a)^{2}+(0-2 a)^{2}}=\sqrt{4 a^{2}}=2 a} \\{\text { Length } O W=\sqrt{(2 a-0)^{2}+(0-0)^{2}}=\sqrt{4 a^{2}}=2 a}\end{array}[/tex]
Thus, the square with vertices [tex]O(0,0), S(0,2a), T(2a,2a), W(2a,0)[/tex] has sides of length 2a.
Option D: [tex]O(0,0), S(a,0), T(a,a), W(0,a)[/tex]
Now, we shall find the length of the square,
[tex]\begin{aligned}&\text { Length OS }=\sqrt{(a-0)^{2}+(0-0)^{2}}=\sqrt{a^{2}}=a\\&\text { Length } S T=\sqrt{(a-a)^{2}+(a-0)^{2}}=\sqrt{a^{2}}=a\\&\text { Length } T W=\sqrt{(0-a)^{2}+(a-a)^{2}}=\sqrt{a^{2}}=a\\&\text { Length } O W=\sqrt{(0-0)^{2}+(a-0)^{2}}=\sqrt{a^{2}}=a\end{aligned}[/tex]
Thus, the square with vertices [tex]O(0,0), S(a,0), T(a,a), W(0,a)[/tex] has sides of length a.
Thus, the correct answers are option a and option d.
