[tex]cot\theta[/tex] [tex]=\frac{12}{35}[/tex]
Step-by-step explanation:
[tex]sec\theta =\frac{37}{12}[/tex]
⇔[tex]\frac{1}{cos \theta} =\frac{37}{12}[/tex]
⇔[tex]cos \theta = \frac{12}{37}[/tex]
we know that
[tex]sin \theta = \sqrt{1-cos^2\theta}[/tex]
[tex]sin\theta =\sqrt{1-(\frac{12}{37})^2 }[/tex]
[tex]sin\theta=\sqrt{\frac{1225}{1369} }[/tex]
[tex]sin\theta = \frac{35}{37}[/tex]
Therefore [tex]cot\theta =\frac{cos\theta}{sin\theta}[/tex] [tex]=\frac{\frac{12}{37} }{\frac{35}{37} }[/tex] [tex]=\frac{12}{35}[/tex] , for [tex]\frac{\pi}{2} <\theta<\pi[/tex]