Given that secant theta = Negative StartFraction 37 Over 12 EndFraction, what is the value of cotangent theta, for StartFraction pi Over 2 EndFraction less-than theta less-than pi

Respuesta :

[tex]cot\theta[/tex]  [tex]=\frac{12}{35}[/tex]

Step-by-step explanation:

[tex]sec\theta =\frac{37}{12}[/tex]

⇔[tex]\frac{1}{cos \theta} =\frac{37}{12}[/tex]

⇔[tex]cos \theta = \frac{12}{37}[/tex]

we know that

[tex]sin \theta = \sqrt{1-cos^2\theta}[/tex]

[tex]sin\theta =\sqrt{1-(\frac{12}{37})^2 }[/tex]

[tex]sin\theta=\sqrt{\frac{1225}{1369} }[/tex]

[tex]sin\theta = \frac{35}{37}[/tex]

Therefore [tex]cot\theta =\frac{cos\theta}{sin\theta}[/tex]  [tex]=\frac{\frac{12}{37} }{\frac{35}{37} }[/tex]  [tex]=\frac{12}{35}[/tex]  , for [tex]\frac{\pi}{2} <\theta<\pi[/tex]

Answer:

i'm not sure but it might be -12/35

Step-by-step explanation:

RELAXING NOICE
Relax