Respuesta :

Answer:

The length of side GH = x  = 104.28 ft

Rounding off to nearest tenth, we get: x = 104.3  ft

Step-by-step explanation:

Here, given ∠ I = 90° , ∠ G = 20°

So, the triangle GHI is a RIGHT ANGLED triangle.

Also, IG  =   98 feet

Now, using the trigonometric function:

For angle Ф , [tex]Cos \theta = \frac{BASE}{HYPOTENUSE}[/tex]   (using cos (20°)  = 0.93969262078)

Here, base = IG  = 98 ft

And hypotenuse = GH  = x units

and Ф = 20°

[tex]\implies Cos (20) = \frac{98}{x} \\\implies (0.93969262078) = \frac{98}{x}\\\implies x = \frac{98}{ (0.93969262078) } = 104.28[/tex]

or, x  = 104.28 ft

So, the length of side GH = x  = 104.28 ft

Rounding off to nearest tenth, we get: x = 104.3  ft ( as 8 > 5)

RELAXING NOICE
Relax