Which of the following is equivalent to the polynomial below?
x2 – 8x + 19
A. (x + (4 + v3i)(x + (4 – v3i))
B. (r + (4 + v3i))( + - (4 – v3i))
C. (1 - (4 + v3i))( - (4 – v3i))
D. (1 + (4 – v3i)(1 + (4 – v3i))​

Respuesta :

frika

Answer:

[tex](x-(4+\sqrt{3}i))(x-(4-\sqrt{3}i))[/tex]

Step-by-step explanation:

Consider the quadratic expression

[tex]x^2-8x+19[/tex]

First, find its discriminant:

[tex]D=(-8)^2-4\cdot 1\cdot 19=64-76=-12[/tex]

Note that [tex]i^2=-1,[/tex] then [tex]D=12i^2.[/tex]

Use quadratic formula to find the roots:

[tex]x_{1,2}=\dfrac{-(-8)\pm \sqrt{12i^2}}{2\cdot 1}=\dfrac{8\pm 2\sqrt{3} i}{2}=4\pm \sqrt{3}i[/tex]

Now, given quadratic expression is equivalent to

[tex](x-(4+\sqrt{3}i))(x-(4-\sqrt{3}i))\\ \\=(x-4-\sqrt{3}i)(x-4+\sqrt{3}i)[/tex]

RELAXING NOICE
Relax