Answer:
[tex](x-(4+\sqrt{3}i))(x-(4-\sqrt{3}i))[/tex]
Step-by-step explanation:
Consider the quadratic expression
[tex]x^2-8x+19[/tex]
First, find its discriminant:
[tex]D=(-8)^2-4\cdot 1\cdot 19=64-76=-12[/tex]
Note that [tex]i^2=-1,[/tex] then [tex]D=12i^2.[/tex]
Use quadratic formula to find the roots:
[tex]x_{1,2}=\dfrac{-(-8)\pm \sqrt{12i^2}}{2\cdot 1}=\dfrac{8\pm 2\sqrt{3} i}{2}=4\pm \sqrt{3}i[/tex]
Now, given quadratic expression is equivalent to
[tex](x-(4+\sqrt{3}i))(x-(4-\sqrt{3}i))\\ \\=(x-4-\sqrt{3}i)(x-4+\sqrt{3}i)[/tex]