Respuesta :
1) Fundamental units of [tex]\Psi[/tex] are [tex][\frac{mol}{m\cdot s^2}][/tex]
2) Fundamental units of [tex]\Phi[/tex] are [tex][\frac{mol}{m^3}][/tex]
Explanation:
The equation for the variable [tex]\rho[/tex] is
[tex]\rho =\frac{2\gamma \Phi+\Psi}{rg}[/tex]
where we have:
[tex]\rho[/tex] measured in [tex][\frac{mol}{ft^3}][/tex]
[tex]\gamma[/tex] measured in [tex][\frac{J}{kg}][/tex]
[tex]r[/tex] measured in [tex][in][/tex]
[tex]g[/tex] measured in [tex][\frac{m}{s^2}][/tex]
We can re-write the equation as
[tex]\rho rg = 2\gamma \Phi + \Psi[/tex]
And we notice that the units of the term on the left must be equal to the units of the term on the right.
This means that:
1) First of all, [tex]\Psi[/tex] must have the same units of [tex]\rho r g[/tex]. So,
[tex][\rho r g]=[\frac{mol}{ft^3}][in][\frac{m}{s^2}][/tex]
However, both ft (feet) and in (inches) are not fundamental dimensions: this means that they can be expressed as meters. Therefore, the fundamental units of [tex]\Psi[/tex] are
[tex][\Psi]=[\frac{mol}{m^3}][m][\frac{m}{s^2}]=[\frac{mol}{m\cdot s^2}][/tex]
2)
The term [tex]2\gamma \Phi[/tex] must have the same units of [tex]\Psi[/tex] in order to be added to it. Therefore,
[tex][\gamma \Phi] = [\frac{mol}{m\cdot s^2}][/tex]
We also know that the units of [tex]\gamma[/tex] are [tex][\frac{J}{kg}][/tex], therefore
[tex][\frac{J}{kg}][\Phi]= [\frac{mol}{m\cdot s^2}][/tex]
And so, the fundamental units of [tex]\Phi[/tex] are
[tex][\Phi]= [\frac{mol\cdot kg}{J\cdot m\cdot s^2}][/tex]
However, the Joules can be written as
[tex][J]=[kg][\frac{m^2}{s^2}][/tex]
Therefore
[tex][\Phi]= [\frac{mol\cdot kg}{(kg \frac{m^2}{s^2})\cdot m\cdot s^2}]=[\Phi]= [\frac{mol}{m^3}][/tex]
#LearnwithBrainly