Answer:
0.025 m
0.059166 m
Explanation:
P = Pressure
A = Area
x = Compression of spring
Force is given by
[tex]F=PA\\\Rightarrow F=30000\times 0.5\times 10^{-4}\\\Rightarrow F=1.5\ N[/tex]
From Hooke's law
[tex]F=kx\\\Rightarrow x=\dfrac{F}{k}\\\Rightarrow x=\dfrac{1.5}{60}\\\Rightarrow x=0.025\ m[/tex]
The spring is compressed 0.025 m
In the second case
[tex]F_1=1.5\ N[/tex]
[tex]F_2=101000\times 0.5\times 10^{-4}\\\Rightarrow F_2=5.05\ N[/tex]
Net force would be
[tex]F=F_2-F_1\\\Rightarrow F=5.05-1.5\\\Rightarrow F=3.55\ N[/tex]
Compression would be
[tex]x=\dfrac{F}{k}\\\Rightarrow x=\dfrac{3.55}{60}\\\Rightarrow x=0.059167\ m[/tex]
The compression of the spring is 0.059166 m