Find the perimeter of the diagram. Round to the nearest hundredth.

Answer:
The answer to your question is Perimeter = 16.77 u
Step-by-step explanation:
Data
Points
T(0, 0)
S (3, 0)
R (5, 5)
Q (0, 3)
Process
1.- Calculate the distance between the points
dTS = [tex]\sqrt{(3 - 0)^{2}+ (0 -0)^{2}}[/tex]
dTS = [tex]\sqrt{9}[/tex]
dTS = 3
dSR = [tex]\sqrt{(5 - 3)^{2}+ (5- 0)^{2}}[/tex]
dSR = [tex]\sqrt{4 + 25}[/tex]
dSR = [tex]\sqrt{29}[/tex]
dRQ = [tex]\sqrt{(5- 0)^{2}+ (5-3)^{2}}[/tex]
dRQ = [tex]\sqrt{25 + 4}[/tex]
dRQ = [tex]\sqrt{29}[/tex]
dTQ = [tex]\sqrt{(0 - 0)^{2}+ (3- 0)^{2}}[/tex]
dTQ = [tex]\sqrt{9}[/tex]
dTQ = 3
2.- Calculate the perimeter
Perimeter = 3 + [tex]\sqrt{29} + \sqrt{29}[/tex] + 3
Perimeter = 6 + 2[tex]\sqrt{29}[/tex]
Perimeter to the nearest hundredth = 16.77 u