Respuesta :
Answer: 7/12 of the beads are blue and green
Step-by-step explanation: To make both denominators of fraction 3/12 and 1/3 equal, you have to change both denominators to the lowest common denominator. Since the LCD (lowest common denominator) is 12 you have to multiply 1/3 by 4 to make the two denominators match.
1/3 x 4/4= 4/12
Then to find the total fraction of both green and blue beads on the necklace, you simply have to add the two fractions together.
4/12+3/12= 7/12
hope this helps :)
[tex]\dfrac{7}{12}[/tex] of the beads are blue or green.
Important information:
- Blue beads = [tex]\dfrac{3}{12}[/tex]
- Green beads = [tex]\dfrac{1}{3}[/tex]
We need to find the fraction of the beads that are blue or green.
Benchmark fractions:
It is given that [tex]\dfrac{3}{12}[/tex] of the beads are blue and [tex]\dfrac{1}{3}[/tex] are green.
The LCM of denominators 3 and 12 is 12. So, we will use the benchmark fraction of [tex]\dfrac{1}{12}[/tex].
[tex]\dfrac{1}{3}=\dfrac{1\times 4}{3\times 4}[/tex]
[tex]\dfrac{1}{3}=\dfrac{4}{12}[/tex]
Since 3 out of 12 are blue beads and 4 out of 12 are green beads, therefore total 7 beads are blue or yellow out of 12 beads.
[tex]\dfrac{3}{12}+\dfrac{4}{12}=\dfrac{7}{12}[/tex]
Thus, [tex]\dfrac{7}{12}[/tex] of the beads are blue or green.
Find out more about 'Benchmark fractions' here:
https://brainly.com/question/8829934
