Answer:
[tex]9x+4y=36\sqrt{2}[/tex]
Step-by-step explanation:
The given equations are
[tex]x=4\cos \theta[/tex]
[tex]y=9\sin \theta[/tex]
Differentiate with respect to θ .
[tex]\dfrac{dx}{d\theta}=-4\sin \theta[/tex]
[tex]\dfrac{dy}{d\theta}=9\cos \theta[/tex]
[tex]\dfrac{dy}{dx}=\dfrac{dy}{d\theta}\times \dfrac{d\theta}{dx}=\dfrac{9\cos \theta}{-4\sin \theta}=-\dfrac{9}{4}\cot \theta[/tex]
At θ = π/4 ,
[tex]\dfrac{dy}{dx}=-\dfrac{9}{4}\cot (\dfrac{\pi}{4})=-\dfrac{9}{4}[/tex]
[tex]x=4\cos (\dfrac{\pi}{4})=4(\dfrac{1}{\sqrt{2}})=\dfrac{4}{\sqrt{2}}[/tex]
[tex]y=9\sin (\dfrac{\pi}{4})=9(\dfrac{1}{\sqrt{2}})=\dfrac{9}{\sqrt{2}}[/tex]
Slope of the tangent line is -9/4 and point of tangency is [tex](\dfrac{4}{\sqrt{2}},\dfrac{9}{\sqrt{2}})[/tex].
The equation of tangent line is
[tex]y-y_1=m(x-x_1)[/tex]
where, m is slope.
[tex]y-\dfrac{9}{\sqrt{2}}=-\dfrac{9}{4}(x-\dfrac{4}{\sqrt{2}})[/tex]
[tex]y-\dfrac{9}{\sqrt{2}}=-\dfrac{9}{4}(x)+\dfrac{9}{\sqrt{2}}[/tex]
[tex]\dfrac{9}{4}(x)+y=\dfrac{9}{\sqrt{2}}+\dfrac{9}{\sqrt{2}}[/tex]
[tex]\dfrac{9}{4}(x)+y=\dfrac{18}{\sqrt{2}}[/tex]
Multiply both sides by 4.
[tex]9x+4y=\dfrac{72}{\sqrt{2}}[/tex]
[tex]9x+4y=36\sqrt{2}[/tex]
Therefore, the equation of the line tangent is [tex]9x+4y=36\sqrt{2}[/tex].