Respuesta :

Answer:

[tex]9x+4y=36\sqrt{2}[/tex]

Step-by-step explanation:

The given equations are

[tex]x=4\cos \theta[/tex]

[tex]y=9\sin \theta[/tex]

Differentiate with respect to θ .

[tex]\dfrac{dx}{d\theta}=-4\sin \theta[/tex]

[tex]\dfrac{dy}{d\theta}=9\cos \theta[/tex]

[tex]\dfrac{dy}{dx}=\dfrac{dy}{d\theta}\times \dfrac{d\theta}{dx}=\dfrac{9\cos \theta}{-4\sin \theta}=-\dfrac{9}{4}\cot \theta[/tex]

At θ = π/4 ,

[tex]\dfrac{dy}{dx}=-\dfrac{9}{4}\cot (\dfrac{\pi}{4})=-\dfrac{9}{4}[/tex]

[tex]x=4\cos (\dfrac{\pi}{4})=4(\dfrac{1}{\sqrt{2}})=\dfrac{4}{\sqrt{2}}[/tex]

[tex]y=9\sin (\dfrac{\pi}{4})=9(\dfrac{1}{\sqrt{2}})=\dfrac{9}{\sqrt{2}}[/tex]

Slope of the tangent line is -9/4 and point of tangency is [tex](\dfrac{4}{\sqrt{2}},\dfrac{9}{\sqrt{2}})[/tex].

The equation of tangent line is

[tex]y-y_1=m(x-x_1)[/tex]

where, m is slope.

[tex]y-\dfrac{9}{\sqrt{2}}=-\dfrac{9}{4}(x-\dfrac{4}{\sqrt{2}})[/tex]

[tex]y-\dfrac{9}{\sqrt{2}}=-\dfrac{9}{4}(x)+\dfrac{9}{\sqrt{2}}[/tex]

[tex]\dfrac{9}{4}(x)+y=\dfrac{9}{\sqrt{2}}+\dfrac{9}{\sqrt{2}}[/tex]

[tex]\dfrac{9}{4}(x)+y=\dfrac{18}{\sqrt{2}}[/tex]

Multiply both sides by 4.

[tex]9x+4y=\dfrac{72}{\sqrt{2}}[/tex]

[tex]9x+4y=36\sqrt{2}[/tex]

Therefore, the equation of the line tangent is [tex]9x+4y=36\sqrt{2}[/tex].

RELAXING NOICE
Relax