Answer:
[tex]z=35\dfrac{7}{8}\ in[/tex]
Step-by-step explanation:
The mean of four numbers [tex]a,\ b,\ c, \ d[/tex] is
[tex]\dfrac{a+b+c+d}{4}[/tex]
Given
[tex]a=36\dfrac{3}{4}\ in\\ \\b=36\dfrac{3}{8}\ in\\ \\c=37\dfrac{1}{2}\ in\\ \\d=z\ in\\ \\\text{Mean}=36\dfrac{5}{8}\ in,[/tex]
then
[tex]\dfrac{36\dfrac{3}{4}+36\dfrac{5}{8}+37\dfrac{1}{2}+z}{4}=36\dfrac{5}{8}[/tex]
Add numbers in the numerator:
[tex]36\dfrac{3}{4}+36\dfrac{5}{8}+37\dfrac{1}{2}=(36+36+37)+\left(\dfrac{3}{4}+\dfrac{3}{8}+\dfrac{1}{2}\right)=109+\left(\dfrac{6}{8}+\dfrac{3}{8}+\dfrac{4}{8}\right)=109+\dfrac{13}{8}=109+1\dfrac{5}{8}=110\dfrac{5}{8}[/tex]
Hence,
[tex]\dfrac{110\dfrac{5}{8}+z}{4}=36\dfrac{5}{8}\\ \\110\dfrac{5}{8}+z=36\dfrac{5}{8}\cdot 4\\ \\110\dfrac{5}{8}+z=144+\dfrac{5}{2}\\ \\110\dfrac{5}{8}+z=144+2\dfrac{1}{2}\\ \\110\dfrac{5}{8}+z=146\dfrac{1}{2}\\ \\x=146\dfrac{1}{2}-110\dfrac{5}{8}\\ \\z=146\dfrac{4}{8}-110\dfrac{5}{8}\\ \\z=36-\dfrac{1}{8}\\ \\z=35\dfrac{7}{8}\ in[/tex]