Respuesta :
Answer:
0.00000609180381907 T
Explanation:
[tex]\mu_0[/tex] = Vacuum permeability = [tex]4\pi \times 10^{-7}\ H/m[/tex]
I = 3.95 A
r = 6.05 cm
Cylinder area
[tex]a=\pi(0.0705^2-0.0465^2)[/tex]
Area within r = 6.05 cm
[tex]A=\pi(0.0605^2-0.0465^2)[/tex]
Current in the enclosure is given by
[tex]I_1=\dfrac{A}{a}I\\\Rightarrow I_1=\dfrac{\pi(0.0605^2-0.0465^2)}{\pi(0.0705^2-0.0465^2)}\times 3.95\\\Rightarrow I_1=2.10722934473\ A[/tex]
Net enclosed current
[tex]I_n=I-I_1\\\Rightarrow I_n=3.95-2.10722934473\\\Rightarrow I_n=1.84277065527\ A[/tex]
Magnetic field is given by
[tex]B=\dfrac{\mu_0I_n}{2\pi r}\\\Rightarrow B=\dfrac{4\pi \times 10^{-7}\times 1.84277065527}{2\pi\times 0.0605}\\\Rightarrow B=0.00000609180381907\ T[/tex]
The magnetic field strength is 0.00000609180381907 T
The value of the magnetic field from the axis of the conducting tube is ;
= 6.092 * 10⁻⁶ T
Given data :
Outer radius ( Ra ) = 7.05 cm = 0.0705 m
Inner radius ( Rb ) = 4.65 cm = 0.0465 m
Current carried by Conducting tube ( I ) = 3.95 A
r = 6.05 cm
Vacuum permeability ( μ ) = 4π * 10⁻⁷ H / m
First step ; Calculate the cylindrical area ( a ) and Area within r ( A )
Cylindrical area ( a ) = π ( 0.0705² - 0.0465² )
Area within r ( A ) = π ( 0.0605² - 0.0465² )
Next step : Determine the value of the enclosed current and net current
I₁ = [tex]\frac{A}{a} I[/tex] where I = 3.95 A
∴ I₁ = 2.1072 A
Iₙ ( net current ) = I - I₁
= 3.95 A - 2.1072 A = 1.8428 A
final step: determine the magnetic field at distance r = 6.05 cm
β = ( μ Iₙ ) / 2πr
= ( 4π * 10⁻⁷ * 1.8428 ) / 2π * 0.0605
≈ 6.092 * 10⁻⁶ T
Hence we can conclude that the value of the magnetic field from the axis of the conducting tube is 6.092 * 10⁻⁶ T
Learn more : https://brainly.com/question/22403676
Otras preguntas
