by the definition of suplementary angles Angle 1+angle 2=______and angle 2+angle 3=_______ than angle 1+ angle 2+ angle 3 by the ______. Subtract angle 2 from each side. You get Angle 1=_____

Answer:
By the definition of supplementary angles, angle 1 + angle 2 = 180° and angle 2 + angle 3 = 180°. Then angle 1 + angle 2 = angle 2 + angle 3 = 180°. Subtract angle 2 from each side. You get angle 1 = angle 3, or angle 1 ≅ angle 3.
Step-by-step explanation:
The Complete/Correct Question Reads:
By the definition of supplementary angles, angle 1 + angle 2 = _____ and angle 2 + angle 3 = ____ . Then angle 1 + angle 2 = angle 2 + angle 3 ______. Subtract angle 2 from each side. You get angle 1 = ______, or angle 1 ≅ ______.
-------------------------------------------------------------------------------------------------------------
By definition we know that if the Sum of Two Angles is Equal to 180° then the angles are Supplementary.
Now looking at the schematic we can see that our Supplementary angle pairs are:
So let us start solving.
[tex]m[/tex]∠1 [tex]+[/tex] [tex]m[/tex]∠2 [tex]= 180^{o}[/tex]
[tex]m[/tex]∠3 [tex]+[/tex] [tex]m[/tex]∠2 [tex]=180^{o}[/tex]
Then, we have
[tex]m[/tex]∠1 [tex]+[/tex] [tex]m[/tex]∠2 = [tex]m[/tex]∠3 [tex]+[/tex] [tex]m[/tex]∠2 [tex]=180^{o}[/tex]
So subtracting [tex]m[/tex]∠2 from each side we have:
[tex]m[/tex]∠1 [tex]+[/tex] [tex]m[/tex]∠2 [tex]-[/tex] [tex]m[/tex]∠2 = [tex]m[/tex]∠3 [tex]+[/tex] [tex]m[/tex]∠2 [tex]-[/tex] [tex]m[/tex]∠2
[tex]m[/tex]∠1 [tex]=[/tex] [tex]m[/tex]∠3 OR [tex]m[/tex]∠1 ≅ [tex]m[/tex]∠3
So your paragraph will be:
By the definition of supplementary angles, angle 1 + angle 2 = 180° and angle 2 + angle 3 = 180°. Then angle 1 + angle 2 = angle 2 + angle 3 = 180°. Subtract angle 2 from each side. You get angle 1 = angle 3, or angle 1 ≅ angle 3.