by the definition of suplementary angles Angle 1+angle 2=______and angle 2+angle 3=_______ than angle 1+ angle 2+ angle 3 by the ______. Subtract angle 2 from each side. You get Angle 1=_____

by the definition of suplementary angles Angle 1angle 2and angle 2angle 3 than angle 1 angle 2 angle 3 by the Subtract angle 2 from each side You get Angle 1 class=

Respuesta :

Answer:

By the definition of supplementary angles, angle 1 + angle 2 = 180° and angle 2 + angle 3 = 180°. Then angle 1 + angle 2 = angle 2 + angle 3 = 180°. Subtract angle 2 from each side. You get angle 1 = angle 3,  or angle 1 ≅ angle 3.

Step-by-step explanation:

The Complete/Correct Question Reads:

By the definition of supplementary angles, angle 1 + angle 2 = _____ and angle 2 + angle 3 = ____ . Then angle 1 + angle 2 = angle 2 + angle 3 ______. Subtract angle 2 from each side. You get angle 1 = ______, or angle 1 ≅ ______.

-------------------------------------------------------------------------------------------------------------

By definition we know that if the Sum of Two Angles is Equal to 180° then the angles are Supplementary.

Now looking at the schematic we can see that our Supplementary angle pairs are:

  • [tex]m[/tex]∠1  and [tex]m[/tex]∠2
  • [tex]m[/tex]∠3 and [tex]m[/tex]∠2  

So let us start solving.

[tex]m[/tex]∠1  [tex]+[/tex] [tex]m[/tex]∠2 [tex]= 180^{o}[/tex]

[tex]m[/tex]∠3 [tex]+[/tex] [tex]m[/tex]∠2 [tex]=180^{o}[/tex]

Then, we have

[tex]m[/tex]∠1  [tex]+[/tex] [tex]m[/tex]∠2 =  [tex]m[/tex]∠3 [tex]+[/tex] [tex]m[/tex]∠2 [tex]=180^{o}[/tex]

So subtracting [tex]m[/tex]∠2 from each side we have:

[tex]m[/tex]∠1  [tex]+[/tex] [tex]m[/tex]∠2 [tex]-[/tex] [tex]m[/tex]∠2 =  [tex]m[/tex]∠3 [tex]+[/tex] [tex]m[/tex]∠2 [tex]-[/tex] [tex]m[/tex]∠2

[tex]m[/tex]∠1 [tex]=[/tex] [tex]m[/tex]∠3  OR  [tex]m[/tex]∠1 ≅ [tex]m[/tex]∠3  

So your paragraph will be:

By the definition of supplementary angles, angle 1 + angle 2 = 180° and angle 2 + angle 3 = 180°. Then angle 1 + angle 2 = angle 2 + angle 3 = 180°. Subtract angle 2 from each side. You get angle 1 = angle 3,  or angle 1 ≅ angle 3.

RELAXING NOICE
Relax