Answer:
A. (x, y) --- (x – 4, y – 1) and reflected across y = 0
Step-by-step explanation:
Triangle ABC has vertices at points A(-2,-3), B(1,1) and C(1,-3).
1. Translate this triangle 4 units to the left and 1 unit down according to the rule:
[tex](x,y)\rightarrow (x-4,y-1)[/tex]
Then
[tex]A(-2,-3)\rightarrow A'(-6,-4);\\ \\B(1,1)\rightarrow B'(-3,0);\\ \\C(1,-3)\rightarrow C'(-3,-4).[/tex]
2. Reflect triangle A'B'C' across the x-axis (x-axis has the equation y = 0). The rule of this reflection is
[tex](x,y)\rightarrow (x,-y)[/tex]
Then
[tex]A'(-6,-4)\rightarrow D(-6,4);\\ \\B'(-3,0)\rightarrow E(-3,0);\\ \\C'(-3,-4)\rightarrow F(-3,4).[/tex]