Answer:
See details below
Step-by-step explanation:
To verify that y=f(x) is a solution of the differential equation in some interval (where f is defined), we take derivatives respect to x using the usual rules (sum, product, chain rule, exponential,...)
a) [tex]y=ce^{2x}\rightarrow y'=(2x)'ce^{2x}=2ce^{2x}=2y[/tex]
b) [tex]y=(x^2)/3+c/x \rightarrow xy'+y=x( 2x/3 -c/x^{2} )+(x^2)/3+c/x =3x^2/3-c/x+c/x=x^2[/tex]
c) The solution of the differential equation is slightly different (the function given is a solution only if c=0)
[tex]y=1/2 + ce^{(-x^2)} \rightarrow y'+2xy=((-x^2))'ce^{(-x^2)}+2x(1/2 + ce^{(-x^2)} )=-2cxe^{(-x^2)}+x+2cxe^{(-x^2)}=x[/tex]
d) [tex]y=1+c e^{(-x^2)/2)} \rightarrow 2y'+x(y^2-1)=2(-xce^{x^2/2})+x(1+2ce^{x^2/2}+c^2e^{-x^2}-1)=-2xce^{x^2/2}+2xce^{x^2/2}+c^2e^{-x^2}=c^2e^{-x^2}=0[/tex]
only if c=0, this also happens for the other function.