The question is incomplete, here is the complete question:
How do you calculate the wavelength of the light emitted from a mole of photons as they transition from the n = 4 to the n = 1 principal energy level in the hydrogen atom. Recall that for hydrogen [tex]E_n=-2.18\times 10^{-18}J(\frac{1}{n^2})[/tex]
Answer: The wavelength of 1 mole of photons for the given transition is [tex]5.86\times 10^{16}m[/tex]
Explanation:
To calculate the change in energy, we use the equation:
[tex]\Delta E=E_1-E_4[/tex]
Or,
[tex]E_n=-2.18\times 10^{-18}\left (\frac{1}{n_f^2}-\frac{1}{n_i^2}\right )[/tex]
where,
[tex]n_i[/tex] = initial energy level = 4
[tex]n_f[/tex] = final energy level = 1
Putting values in above equation, we get:
[tex]\Delta E=-2.18\times 10^{-18}\left (\frac{1}{1^2}-\frac{1}{4^2}\right )\\\\\Delta E=-2.044\times 10^{-18}J[/tex]
To calculate the wavelength of light for 1 mole of photons, we use the equation:
[tex]E=\frac{N_Ahc}{\lambda}[/tex]
where,
[tex]N_A[/tex] = Avogadro's number = [tex]6.022\times 10^{23}[/tex]
h = Planck's constant = [tex]6.625\times 10^{-34}J.s[/tex]
c = speed of light = [tex]3\times 10^8m/s[/tex]
[tex]\lambda[/tex] = wavelength of light = ?
E = energy emitted = [tex]2.044\times 10^{-18}J[/tex]
Putting values in above equation, we get:
[tex]2.044\times 10^{-18}J=\frac{6.022\times 10^{23}\times 6.625\times 10^{-34}J.s\times 3\times 10^8m/s}{\lambda}\\\\\lambda=\frac{6.022\times 10^{23}\times 6.625\times 10^{-34}J.s\times 3\times 10^8m/s}{2.044\times 10^{-18}J}=5.86\times 10^{16}m[/tex]
Hence, the wavelength of 1 mole of photons for the given transition is [tex]5.86\times 10^{16}m[/tex]