Answer:
f=896Hz
Explanation:
Given data
Vs(speed of the ambulance)={(104 km/h)*(1000m*(1 h/3600)}=28.9m/s
f(frequency of the ambulance siren)=821 Hz
v(speed of sound)=345 m/s
Vo(speed of the observer)=0 m/s
To find
f(The ambulance is approaching the person)
Solution
From Doppler effect
[tex]f^{i}=(\frac{v+v_{o} }{v-v_{s} })f[/tex]
As the ambulance approaches the we assign a positive sign for speed "vs" of the ambulance
So
[tex]f^{i}=(\frac{v+0}{v-(+v_{s}) } )f\\f^{i}=(\frac{v}{v-v_{s} } )f[/tex]
Substitute the values from given data
[tex]f^{i}=(\frac{345m/s}{345m/s-28.9m/s} )821Hz\\f^{i}=896Hz[/tex]