Answer:
630630
Step-by-step explanation:
Given:
Total number of new employee in the company (n) = 15
Number to be assign to day shift ([tex]k_{1}[/tex]) = 6
Number to be assign to night shift ([tex]k_{2}[/tex]) = 4
Number to be assign to graveyard shift ([tex]k_{3}[/tex]) = 5
Solution:
Possible ways to assign day shift = [tex]k_{1}![/tex] = 6!
Possible ways to assign night shift = [tex]k_{2}![/tex] = 4!
Possible ways to assign graveyard shift = [tex]k_{3}![/tex] = 5!
Possible ways to assign new employees = n! = 15!
Total number of ways assignment can be made = [tex]\frac{n!}{k_{1}!k_{2}k_{3}!}=\frac{15!}{6!4!5!}[/tex]=630630