Answer:
b)9.1 percent
Explanation:
Data provided in the question:
1R1 = 13 percent,
1R2 = 16 percent3
E(2r1) = 10 percent
Now,
The liquidity premium theory is given as:
1 + 1R2 = [tex][ ( 1 + 1R1)\times(1 + E(2r1) + L2 )]^{\frac{1}{n}}[/tex]
for year 2, n = 2
Thus,
1 + 0.16 = [tex][ ( 1 + 0.13)\times(1 + 0.10 + L2 )]^{\frac{1}{2}}[/tex]
or
1.16² = [ 1.13 × ( 1.10 + L2)]
or
1.191 = 1.10 + L2
or
1.191 - 1.10 = L2
or
L2 = 0.091
or
L = 0.091 × 100% = 9.1%
b)9.1 percent