Answer:
The activation energy for the reaction is, 1.90682 KJ/mol.
Explanation:
According to the Arrhenius equation,
[tex]K=A\times e^{\frac{-Ea}{RT}}[/tex]
or,
[tex]\log (\frac{K_2}{K_1})=\frac{Ea}{2.303\times R}[\frac{1}{T_1}-\frac{1}{T_2}][/tex]
where,
[tex]K_1[/tex] = rate constant at 225 K = [tex]0.391 s^{-1}[/tex]
[tex]K_2[/tex] = rate constant at 525 K = [tex]0.700 s^{-1}[/tex]
[tex]Ea[/tex] = activation energy for the reaction = ?
R = gas constant = 8.314 J/mole.K
[tex]T_1=225 K, T_2=525 K[/tex]
Now put all the given values in this formula, we get
[tex]\log (\frac{0.700 s^{-1}}{0.391 s^{-1}})=\frac{Ea}{2.303\times 8.314J/mole.K}[\frac{1}{225 K}-\frac{1}{525 K}][/tex]
[tex]Ea=1,906.82 J/mole=1.90682 KJ/mol[/tex]
Therefore, the activation energy for the reaction is, 1.90682 KJ/mol.