Answer:
Mr. Smith's class sold 32 items for $112 and Mr. Davis's class sold 40 items for $110
Mr. Smith's class earned $2 more.
Step-by-step explanation:
Let
x = number of items Mr. Smith's class sold
y = number of items Mr. Davis's class sold
1. Together, the classes sold 72 items, then
[tex]x+y=72[/tex]
2. .Mr. Smith's class sold wrapping paper for $3.50 each, so x items cost $3.50x.
Mr. Davis ' class sold magazines for $2.75 each, so y items cost $2.75y.
Together, the classes earned $222, then
[tex]3.5x+2.75y=222[/tex]
3. You get the system of two equations:
[tex]\left\{\begin{array}{l}x+y=72\\ \\3.5x+2.75y=222\end{array}\right.[/tex]
From the first equation,
[tex]x=72-y,[/tex]
substitute it into the second equation:
[tex]3.5(72-y)+2.75y=222\\ \\252-3.5y+2.75y=222\\ \\-3.5y+2.75y=222-252\\ \\-0.75y=-30\\ \\75y=3,000\\ \\y=40\\ \\x=72-y=72-40=32[/tex]
Mr. Smith's class sold 32 items for [tex]\$3.50\cdot 32=\$112[/tex] and Mr. Davis's class sold 40 items for [tex]\$2.75\cdot 40=\$110[/tex]
Mr. Smith's class earned [tex]\$112-\$110=\$2[/tex] more.