Respuesta :
Answer:
A) The actual error |f(0.5) - P3(0.5)| is 0.0340735. The error using Taylor's error formula R₃(0.5) is 0.2917.
B) Te error in the interval [0.5,1.5] is 0.0340735.
C) The approximate integral using P₃(x) is 1/12
D) The real error between the two integrals is 4.687·10^(-3) while the error using \int_{0.5}^{1.5}|R_{3}(x)dx| is 0.018595
Step-by-step explanation:
A) To determine the error we first have to write the third grade Taylor polynomial P3(x):
[tex]P_n(x)=\displaystyle\sum_{k=0}^N \frac{f^{k}(a)}{k!}(x-a)[/tex] with N=3
[tex]P_3(x)=\displaystyle\sum_{k=0}^3 \frac{f^{k}(1)}{k!}(x-1)=(x-1)^2-\frac{1}{2} (x-1)^3[/tex]
The error for the third grade Taylor polynomial R₃(x) is represented as the next term non-written in the polynomial expression near to the point x:
[tex]R_3(x)=\displaystyle \frac{f^{4}(x)}{4!}(x-a)=\frac{1}{24} (\frac{2}{x^3}+\frac{6}{x^4})(x-1)^4[/tex]
Therefore the real error is:
[tex]Err(0.5)=|f(0.5)-P_3(0.5)|=0.0340735[/tex]
The error of the Taylor polynomial R₃(0.5) is:
[tex]R_3(0.5)=\displaystyle \frac{1}{24} (\frac{2}{0.5^3}+\frac{6}{0.5^4})(0.5-1)^4=0.2917[/tex]
B) The error in the interval [0.5,1.5] is the maximum error in that interval.
This is found in the extremes of the intervals. We analyze what happens in X=1.5:
[tex]Err(1.5)=|f(1.5)-P_3(1.5)|=0.01523[/tex]
[tex]R_3(1.5)=\displaystyle \frac{1}{24} (\frac{2}{1.5^3}+\frac{6}{1.5^4})(1.5-1)^4=\frac{1}{216}=4.63\cdot 10^{-3}[/tex]
Both of these errors are smaller than Err(0.5) and R₃(0.5). Therefore the error in this interval is Err[0.5,1.5] is Err(0.5).
C) The approximation of the integral and the real integral is:
[tex]I_f=\displaystyle\int_{0.5}^{1.5} f(x)\, dx=\int_{0.5}^{1.5} (x-1)ln(x)\, dx=0.08802039[/tex]
[tex]I_{p3}=\displaystyle\int_{0.5}^{1.5} P_3(x)\, dx=\int_{0.5}^{1.5} (x-1)^2-0.5(x-1)^3\, dx=1/12=0.0833333[/tex]
D) The error in the integrals is:
[tex]Errint=|I_f-I_{p3}|=4.687\cdot10^{-3}[/tex]
[tex]Errint(R_3)=\displaystyle\int_{0.5}^{1.5} R_3(x)\, dx=\int_{0.5}^{1.5} \frac{1}{24} (\frac{2}{x^3}+\frac{6}{x^4})(x-1)^4\, dx=0.018595[/tex]