A listener increases his distance from a sound source by a factor of 4.49.
Assuming that the source emits sound uniformly in all directions, what is the change in the sound intensity level in dB?

Respuesta :

Answer: Δβ (dB) = -13.1dB

Explanation:

The intensity of sound is inversely proportional to the square of the distance between them.

I ∝ 1/r²

I₁/I₂= r₂²/r₁² .....1

When the listener increases his distance from the source by a factor of 4.49.

Then,

r₂/r₁= 4.49

From equation 1

I₁/I₂ = (4.49)²

I₁/I₂ = 20.16

I₂/I₁ = 1/20.16

The change in sound intensity in dB can be given as

Δβ (dB) = 10 log(I₂/l₁) = 10log(1/20.6) = -13.1dB

The change in the sound intensity level in dB is -13.1 dB.

The given parameters;

  • increase in distance = 4.49

The relationship between intensity of sound and distance is calculated as follows;

[tex]I = \frac{k}{r^2} \\\\I_1r_1^2 = I_2r_2^2\\\\I_2 = \frac{I_1 r_1^2 }{r_2^2} \\\\I_2 = \frac{I_1 r_1^2}{(4.49r_1)^2} \\\\I_2 = \frac{I_1r_1^2}{20.16r_1^2} \\\\I_2 = \frac{I_1}{20.16} \\\\\frac{I_2}{I_1} = \frac{1}{20.16}[/tex]

The change in sound intensity in dB is calculated as follows;

[tex]\Delta \beta = 10 \ log[\frac{I_2}{I_1} ]\\\\\Delta \beta = 10 \times log [\frac{1}{20.16} ]\\\\\Delta \beta = -13.1 \ dB[/tex]

Learn more about sound intensity here: https://brainly.com/question/14695863

RELAXING NOICE
Relax