Respuesta :
The question is incomplete, here is the complete question:
Calculate the solubility of hydrogen in water at an atmospheric pressure of 0.380 atm (a typical value at high altitude).
Atmospheric Gas Mole Fraction kH mol/(L*atm)
[tex]N_2[/tex] [tex]7.81\times 10^{-1}[/tex] [tex]6.70\times 10^{-4}[/tex]
[tex]O_2[/tex] [tex]2.10\times 10^{-1}[/tex] [tex]1.30\times 10^{-3}[/tex]
Ar [tex]9.34\times 10^{-3}[/tex] [tex]1.40\times 10^{-3}[/tex]
[tex]CO_2[/tex] [tex]3.33\times 10^{-4}[/tex] [tex]3.50\times 10^{-2}[/tex]
[tex]CH_4[/tex] [tex]2.00\times 10^{-6}[/tex] [tex]1.40\times 10^{-3}[/tex]
[tex]H_2[/tex] [tex]5.00\times 10^{-7}[/tex] [tex]7.80\times 10^{-4}[/tex]
Answer: The solubility of hydrogen gas in water at given atmospheric pressure is [tex]1.48\times 10^{-10}M[/tex]
Explanation:
To calculate the partial pressure of hydrogen gas, we use the equation given by Raoult's law, which is:
[tex]p_{\text{hydrogen gas}}=p_T\times \chi_{\text{hydrogen gas}}[/tex]
where,
[tex]p_A[/tex] = partial pressure of hydrogen gas = ?
[tex]p_T[/tex] = total pressure = 0.380 atm
[tex]\chi_A[/tex] = mole fraction of hydrogen gas = [tex]5.00\times 10^{-7}[/tex]
Putting values in above equation, we get:
[tex]p_{\text{hydrogen gas}}=0.380\times 5.00\times 10^{-7}\\\\p_{\text{hydrogen gas}}=1.9\times 10^{-7}atm[/tex]
To calculate the molar solubility, we use the equation given by Henry's law, which is:
[tex]C_{H_2}=K_H\times p_{H_2}[/tex]
where,
[tex]K_H[/tex] = Henry's constant = [tex]7.80\times 10^{-4}mol/L.atm[/tex]
[tex]p_{H_2}[/tex] = partial pressure of hydrogen gas = [tex]1.9\times 10^{-7}atm[/tex]
Putting values in above equation, we get:
[tex]C_{H_2}=7.80\times 10^{-4}mol/L.atm\times 1.9\times 10^{-7}atm\\\\C_{CO_2}=1.48\times 10^{-10}M[/tex]
Hence, the solubility of hydrogen gas in water at given atmospheric pressure is [tex]1.48\times 10^{-10}M[/tex]