Answer:
The force that the magnetic field of the current exerts on the electron is [tex]2.30\times10^{-19}\ N[/tex]
Explanation:
Given that,
Distance = 4.40 cm
Speed [tex]v= 6.10\times10^{4}\ m/s[/tex]
Suppose a long, straight wire carries a current of 5.20 . An electron is traveling in the vicinity of the wire.
We need to calculate the magnetic field of the current exerts on the electron
Using formula of force
[tex]F=qv\times B[/tex]
[tex]F=qv\times\dfrac{\mu_{0}I}{2\pi r}[/tex]
Put the value into the formula
[tex]F=1.6\times10^{-19}\times6.10\times10^{4}\times\dfrac{4\pi\times10^{-7}\times5.20}{2\pi\times4.40\times10^{-2}}[/tex]
[tex]F=2.30\times10^{-19}\ N[/tex]
Hence, The force that the magnetic field of the current exerts on the electron is [tex]2.30\times10^{-19}\ N[/tex]