Answer: The required distance is given by
[tex]r_2=1\text{ m}\cdot 10^\frac{\beta}{20}.[/tex]
Explanation: The sound intensity in dB is given by the formula
[tex]\beta \text{ dB}=10\log\frac{I}{I_0}[/tex]
where [tex]I_0[/tex] is the hearing threshold in absolute units and [tex]I[/tex] is the absolute intensity of the sound which depends on the distance. In general, for two distances [tex]r_1[/tex] and [tex]r_2[/tex] we have that
[tex]\frac{I(r_1)}{I(r_2)}=\frac{r_2^2}{r_1^2}=\left(\frac{r_2}{r_1}\right)^2.[/tex]
Now let us take [tex]r_1=1\text{ m}[/tex] and let [tex]r_2[/tex] be the required distance. We have
[tex]\beta \text{ dB}=10\log\frac{I(r_1)}{I_0},\quad 0\text{ db}=10\log\frac{I(r_2)}{I_0}.[/tex]
Exponentiating these equations we obtain
[tex]10^{\frac{\beta}{10}}=\frac{I(r_1)}{I_0},\quad 10^0=1=\frac{I(r_2)}{I_0}.[/tex]
Dividing them
[tex]\frac{I(r_1)}{I(r_2)}=10^\frac{\beta}{10}.[/tex]
Using the previously stated identity
[tex]\frac{r_2^2}{r_1^2}=10^\frac{\beta}{10}\Rightarrow r_2=r_110^\frac{\beta}{20}=1\text{ m}\cdot 10^\frac{\beta}{10}[/tex]
Now if we use the given example where [tex]\beta=11[/tex] we have
[tex]r_2=1\text{ m}\cdot 10^{\frac{11}{20}}=3.55\text{ m}.[/tex]